

Five-year Integrated M.Sc. Chemistry Teaching Plan (July 2019-Dec 2019)

Semester:	VII
Course:	Organic Reaction Mechanism and Stereochemistry (ICCHM7C002T)
Course Teacher:	Dr. V. Sridharan

Week	Lecture No./Day	Topic to be Taught	No of Hours	Suggested Readings
	Ι	Structure and bonding : Bonding, Atomic and molecular orbitals	1	1-5
1 st Week	II	Hybridization, Electronic structure of molecules	1	1-5
	III	Electronegativity, Dipole moment, Inductive and field effects	1	1-5
	IV	Bond distance, angle and energies, Cross conjugation, Resonance	1	1-5
	Ι	Hyperconjugation, Steric inhibition of resonance	1	1-5
	II	Tautomerism, Hydrogen bonding	1	1-5
2 nd Week	III	Acids and Bases, Factors affecting the strength of acids and bases	1	1-5
	IV	Aromaticity: Huckel's theory of aromaticity, Aromatic, antiaromatic and homoaromatic systems	1	1-5
	Ι	Cyclopentadienyl anion and cation, MO description	1	1-5
3 rd	II	Mobius twist and aromaticity, Heterocyclic aromatic systems	1	1-5
Week	III	Aromaticity of annulenes and heteroannulenes	1	1-5
	IV	Fullerenes and fused ring systems	1	1-5
41	Ι	Reactive intermediates : Carbocation, carbanion, radicals, carbenes and nitrenes: Generation, geometry, stability and reactivity	1	2,3,10-12
4^{th}	II	Contd.	1	2,3,10-12
Week	III	Nucleophilicity, Heteroatom nucleophiles, Solvent effects	1	2,3,10-12
	IV	Alkene nucleophiles, α-Effect	1	2,3,10-12
	Ι	Ambident nucleophiles: Thiocyanate, cyanide, nitrite and nitronium ions, Enolate ions, Allyl anions	1	2,3
⊂th	II	Electrophilicity: Trigonal electrophiles, Tetrahedral electrophiles, Hard and soft electrophiles	1	2,3
5 th Week	III	Ambient electrophiles: Aromatic and aliphatic electrophiles	1	2,3
	IV	Mechanistic aspects: Transition state theory, Intermediate, Transition state, Reaction coordinate diagram	1	1-3
6 th Week	Ι	Linear free energy relationships, Quantitative correlation of substituent effects on reactivity,	1	1-3

Department of Chemistry and Chemical Sciences CENTRAL UNIVERSITY OF JAMMU Rahya-Suchani (Bagla), District-Samba, Jammu-181143, (J&K) India

		Hammett and Taft equations		
-	II	Microscopic reversibility, Kinetic versus	1	1-3
		thermodynamic control		
	III	Hammond postulate, Curtin-Hammett principle	1	1-3
-	IV	Isotope effects, Cross over experiments	1	1-3
	Ι	Stereochemistry: Optical activity and chirality	1	13-15
	II	Stereochemistry of molecules with more than one	1	13-15
– th		asymmetric carbon (up to five)		
7 th	III	Homotopic and heterotopic ligands and faces,	1	13-15
Week		Heterotopicity, Enantiotopic and diastereotopic atoms,		
		groups and faces		
	IV	Contd.	1	13-15
	Ι	Contd.	1	13-15
oth	II	Stereotopic ligands and NMR spectroscopy	1	13-15
8 th	III	Prochiral centers: Chiral methyl, phosphate, sulphate	1	13-15
Week		and thiophosphate groups		
-	IV	Contd.	1	13-15
	Ι	Contd.	1	13-15
a th	II	Chirality of molecules devoid of chiral centers:	1	13-15
9 th		Biphenyls	_	
Week	III	Allenes and spiranes	1	13-15
	IV	Molecules with planar chirality	1	13-15
	I	Conformational analysis: Conformational analysis	1	13-15
		of acyclic and cyclic compounds		
1 oth	II	Contd.	1	13-15
10 th	III	Effect of conformation on reactivity in acyclic	1	13-15
Week		compounds and cyclohexanes: Stereoelectronic and	_	
		steric factors		
-	IV	Contd.	1	13-15
	Ι	Oxidation of cyclohexanol, Esterification of	1	13-15
		cyclohexane carboxylic acid		
11^{th}	II	Solvolysis of tosylates, E2 and <i>cis</i> eliminations	1	13-15
Week	III	Formation and cleavage of epoxide ring, Neighboring	1	13-15
		group participation		
-	IV	Molecular rearrangements	1	13-15
	Ι	Conformation of cyclohexene and cyclohexanone	1	13-15
_	II	Conformation and stereochemistry of <i>cis</i> - and <i>trans</i> -	1	13-15
12^{th}		decalins and 9-methyl decalin	_	
Week	III	Conformation of perhydrophenanthrene and	1	13-15
		perhydroanthracene	-	10 10
F	IV	Contd.	1	13-15
	I	Asymmetric synthesis: Principles of asymmetric	1	13,14,16-
13 th Week		synthesis		21
	II	Stereospecific and stereoselective reactions,	1	13,14,16-
		Enantioselectivity and diastereoselectivity	`	21
				13,14,16-

Department of Chemistry and Chemical Sciences CENTRAL UNIVERSITY OF JAMMU Rahya-Suchani (Bagla), District-Samba, Jammu-181143, (J&K) India

				0.1
				21
	IV	Analytical methods for determining enantiomeric	1	13,14,16-
		excess		21
	Ι	Resolving agents and resolution of racemic	1	13,14,16-
		compounds having common functional groups such as		21
		alcohol, amine and acid		
14^{th}	II	Contd.	1	13,14,16-
				21
Week	III	Sharpless epoxidation, symmetric dihydroxylation	1	13,14,16-
				21
	IV	Asymmetric Diels-Alder reactions	1	13,14,16-
				21
15 th Week	Ι	Chiral borane reagents	1	13,14,16-
				21
	II	Asymmetric reductions of prochiral carbonyl	1	13,14,16-
		compounds and olefins		21
	III	Contd.	1	13,14,16-
				21
	IV	Revision of Units I and II	1	
16 th Week	Ι	Revision of Units III and IV	1	
	II	Revision of Unit V	1	
	III	Discussion of model question papers	1	
	IV	Discussion of model question papers	1	

REFERENCES

- 1. M. B. Smith and J. March, *March's Advanced Organic Chemistry*, 6th Ed., Wiley, New Jersey, 2007.
- 2. F. A. Carey and R. J. Sundberg, *Advanced Organic Chemistry: Part A: Structure and Mechanisms*, 5th Ed., Springer, New York, 2007.
- 3. F. A. Carey and R. J. Sundberg, *Advanced Organic Chemistry: Part B: Reactions and Syntheses*: 5th Ed., Springer, New York, 2007.
- 4. R. Bruckner, Organic Mechanisms, Ed., M. Harmata, Springer, Berlin, 2010.
- 5. J. Clayden, N. Greeves, S. Warren and P. Wothers, *Organic Chemistry*, Oxford University Press, Oxford, 2001.
- 6. M. B. Smith, Organic Synthesis, 2nd Ed., McGraw-Hill, New Delhi, 2004.
- 7. F. A. Carey, Organic Chemistry, McGraw-Hill, New Delhi, 2000.
- 8. J. McMurry, Organic Chemistry, 5th Ed., Brooks/Cole, New York, 2000.
- 9. J. J. Li, Ed., Name Reactions for Homologations, Part II, Wiley, New Jersey, 2009.
- 10. C. J. Moody and G. H. Whitham, *Reactive intermediates*, Oxford Chemistry Primers, 1992.
- 11. R. O. C. Norman and J. M. Coxon, *Principles of Organic Synthesis*, 3rd Ed. CRC press, New York, 2012.
- 12. P. Sykes, A guidebook to Mechanism in Organic Chemistry, 6th Ed. Lingman Scientific & Technical, New York, 1986.
- 13. E. L. Eliel and S. H. Wilen, *Stereochemistry of Organic Compounds*, Wiley, New York, 2008.

- 14. D. Nasipuri, *Stereochemistry of Organic Compounds: Principles and Applications*, 2nd Ed., New Age International, 2002.
- 15. P. S. Kalsi, *Stereochemistry: Conformation and Mechanism*, 9th Ed., New Age International, 2009.
- 16. J. D. Morrison, Asymmetric Synthesis, Vol 1-5, Academic press, 1983.
- 17. Comprehensive Asymmetric Catalysis, E. N. Jacobsen, A. Pfaltz, H. Yamamoto, Eds., Springer, 2000.
- 18. R. Noyori, Asymmetric Catalysis in Organic synthesis, Wiley-New York, 1994.
- 19. I. Ojima, Catalytic Asymmetric Synthesis, VCH-NY, Pergamon, 1998.
- 20. Methods for the Asymmetric Synthesis of Complex Organic Molecules, D. J. O'Leary, Lecture Notes 2001.
- 21. H. B. Kagan, *Aymmetric Synthesis*, 1st Ed., Thieme Medical Publishers, 2003.