

Rahya-Suchani (Bagla), District-Samba, Jammu-181143, (J&K) India

Five-year Integrated M.Sc. Chemistry Teaching Plan (Jan 2021-July 2021)

Semester: VIII

Course: Organic Synthesis and Reaction Mechanism (ICCHM8E001T)

Course Teacher: Dr. Princy Gupta

Week	Lecture No /Dov	Topic to be Taught	No of Hours	Suggested
	No./Day	Aliphatic nucleophilic substitution: Sn1, Sn2,	1	Readings 1, 2, 3, 4
	1	Reactivity, Structural and solvent effects,	1	1, 2, 3, 4
		Stereochemical aspects,		
	II		1	1, 2, 3, 4
1 St	11	Sni and SET mechanisms, Reactivity,	1	1, 2, 3, 4
1 st Week		Structural and solvent effects, Stereochemical		
	III	aspects, The neighboring group mechanism, Substitution	1	1, 2, 3, 4
	111		1	1, 2, 3, 4
	IV	in norbornyl and bridge-head systems,	1	1, 2, 3, 4
	1 V	Substitution at benzylic, allylic and	1	1, 2, 3, 4
	I	vinylic carbons, Substitution at <i>sp</i> ₂ carbons,	1	1, 2, 3, 4
	1	Alkylation and acylation of amines, Alkylation	1	1, 2, 3, 4
2 nd	II	and acylation of active methylene compounds,	1	1 2 2 4
Week	III	Hydrolysis of esters		1, 2, 3, 4
week		Claisen and Dieckmann condensation	1	1, 2, 3, 4
	IV	Aromatic nucleophilic substitution: SnAr via Meisenheimer complex	1	1, 2, 3, 4
	I	Benzyne and Srn1 mechanisms, Reactivity,	1	1, 2, 3, 4
	II	Cine substitution, Chichibabin reaction.	1	1, 2, 3, 4
	III	Electrophilic substitution: Se1, Se2 and Sei	1	1, 2, 3, 4
3^{rd}	111	Mechanisms, Aromatic electrophilic substitution	1	1, 2, 3, 4
Week		via Wheland intermediates,		
	IV	Orientation and reactivity, Ortho effect,	1	1, 2, 3, 4
	1 V	Substitution of H+ versus ipsosubstitution,	1	1, 2, 3, 4
	I	Ar-Halogen, Ar-SO ₃ H	1	1, 2, 3, 4
	II	Ar-NO ₂ bond formation, Diazonium coupling,	1	1, 2, 3, 4
	III	Friedel-Crafts related reactions and Vilsmeier-	1	1, 2, 3, 4
4 th	111	Haack.	1	1, 2, 3, 4
Week	IV	Addition reactions: Addition to C-C multiple	1	1, 2, 3, 4
	1 4	bonds, Electrophilic, nucleophilic and free	1	1, 2, 3, 4
		radical addition, Mechanisms		
	I	Orientation and reactivity, Stereochemistry of	1	1, 2, 3, 4
	1	addition reactions of alkenes: Bromine addition,	1	1, 2, 3, 4
5 th Week	II	Hydrogen bromide addition, Catalytic	1	1, 2, 3, 4
	11	hydrogenation addition, Catalytic	1	1, 2, 3, 7
	III	Hydroboration-oxidation,	1	1, 2, 3, 4
	IV	1,2 and 1,4-additions of organometallic reagents	1	1, 2, 3, 4
	1 1	(Mg, R ₂ CuLi	1	1, 2, 3, 4

Rahya-Suchani (Bagla), District-Samba, Jammu-181143, (J&K) India

	I	Michael addition	1	1, 2, 3, 4
	II	Addition to C-heteroatom multiple bond	1	1, 2, 3, 4
6 th	III	Elimination reactions: E1, E2 Mechanisms,	1	1, 2, 3, 4
Week		Regioselectivity, Stereochemistry of elimination		, , - ,
	IV	E1cB Mechanisms, Regioselectivity,	1	1, 2, 3, 4
		Stereochemistry of elimination:		
	I	Cyclic and acyclic systems, Bredt's rule,	1	1, 2, 3, 4
	II	Pyrolytic elimination, Chugaev reaction,	1	1, 2, 3, 4
		Hofmann degradation, Shapiro reaction, Cope		
⊄ th		elimination		
7 th Week	III	Competition between substitution and	1	1, 2, 3, 4
		elimination		
	IV	Molecular rearrangements: Mechanism and	1	1, 2, 3, 4
		stereochemical aspects of Pinacol-pinacolone,		
		Demjanov rearrangements		
	I	Wagner-Meerwein Pummerer rearrangements	1	1, 2, 3, 4
8 th	II	Beckmann, Schmidt Hofmann rearrangements	1	1, 2, 3, 4
Week	III	Benzilbenzilic acid, Favorskii rearrangements	1	1, 2, 3, 4
	IV	Wolff, Fries, Stevens rearrangements	1	1, 2, 3, 4
	I	Curtius, Lossen rearrangements	1	1, 2, 3, 4
	II	Baeyer-Villiger, Sommelet-Hauser	1	1, 2, 3, 4
		rearrangements		
9 th	III	Problems on rearrangement	1	1, 5, 6, 7
Week				
	IV	Retrosynthetic analysis: Disconnection	1	5, 6
		approach, Synthons and synthetic equivalents		
	I	Transform, Functional group interconversion,	1	5, 6
		Umpolung, Chemo-, regio and stereoselectivities,		
	II	One group disconnection: Alcohols and carbonyl	1	5, 6
10 th		compounds		
Week	III	Two group disconnections: 1,2- difunctional	1	5, 6
		compounds		
	IV	Two group	1	5, 6
		disconnections: 1,3-difunctional compounds,		
	I	Two group	1	5, 6
		disconnections: 1,4-difunctional compounds,		
11 th	II	Two group	1	5, 6
Week		disconnections:1,5-difunctional compounds,		
,, con	III	Two group	1	5, 6
		disconnections: 1,6-difunctional compounds,		
	IV	Diels-Alder reactions	1	5, 6
12 th	I	Robinson annulation	1	5, 6
Week	II	Michael addition	1	5, 6

Rahya-Suchani (Bagla), District-Samba, Jammu-181143, (J&K) India

	III	Retrosynthetic analysis of longifolene	1	5, 6
_	IV	Protecting groups in organic synthesis: Importance, Protection and deprotection of hydroxyl groups	1	7,8
13 th Week	I	MOM, MTM, SMOM and THP ethers	1	7,8
	II	Silyl ethers (TMS, TES, TIPS, TBDMS and TBDPS ethers)	1	7,8
	III	Protection for 1,2- and 1,3-diols	1	7,8
	IV	Protection and deprotection of carbonyl compounds: Acyclic and cyclic acetals and ketals	1	7,8
	I	monothio and dithioacetals and ketals	1	7,8
14 th	II	Monoprotection of dicarbonyl compounds,	1	7,8
Week	III	Protection of amines, Boc, Cbz, PMB as protecting groups	1	7,8
	IV	Bn, Ac, Bz and Ts as protecting groups	1	7,8
15 th	I	Common protecting groups for carboxylic acids and thiols	1	7,8
10	II	Contd.	1	7,8
Week	III	Revision of Unit I	1	
	IV	Revision of Unit II	1	
	I	Revision of Unit III	1	
16 th	II	Revision of Unit IV	1	
Week	III	Revision of Unit V, Discussion of model question papers	1	
	IV	Discussion of model question papers	1	

REFERENCES

- 1. M. B. Smith and J. March, March's Advanced Organic Chemistry, 6th Ed., Wiley, New Jersey, 2007.
- 2. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry: Part A: Structure and Mechanisms, 5th Ed., Springer, New York, 2007.
- 3. J. Clayden, N. Greeves, S. Warren and P. Wothers, Organic Chemistry, Oxford University Press, Oxford, 2001.
- 4. J. McMurry, Organic Chemistry, 5th Ed., Brooks/Cole, New York, 2000.
- 5. S. Warren and P. Wyatt, Organic Synthesis: The Disconnection Approach, 2nd Ed., Wiley, 2008.
- 6. S. Warren and P. Wyatt, Organic Synthesis: Strategy and Control, Wiley, 2007.
- 7. Philip J. Kocienski, Protecting groups, 3rd Ed., Thieme, 2005.
- 8. P. G. M. Wuts and T. W. Greene, Greene's Protective Groups in Organic Synthesis, 4th Ed., Wiley, 2006.

Rahya-Suchani (Bagla), District-Samba, Jammu-181143, (J&K) India