

Five-Year Integrated M.Sc Chemistry Teaching Plan (February, 2021- June, 2021)

Semester: VIII Course: Group Theory, Transition Metal Chemistry and Photochemistry(ICCHM8C001T) Course Teacher: Dr. Mousumi Pal

Week	Lecture No/Day	Topic to be taught	No of Hour	Suggested Reading
	Ι	Introduction of symmetry and group theory in Chemistry:	1	1,2
1 st		The Concept of group, sub-group, point symmetry group		,
Week	II	Symmetry elements and symmetry operations	1	2, 4, 5, 8
	III	Contd.	1	2, 4, 5, 8
	IV	Assignments of point groups to inorganic molecule	1	2, 4
	Ι	Some general rules for multiplication of symmetry operations	1	2
2 nd	II	Multiplication table for water and ammonia	1	2
Week	III	Contd.	1	2
	IV	Representations(matrices, matrix)	1	1,2
	Ι	Representation C_{2V} and C_{3V} point groups irreducible representations	1	1,2
3 rd Week	II	Schonfilies symbols, conjugacy relation and classes	1	1,2
	III	Character and character tables for C _{2V} point groups	1	1,2,4
	IV	Character and character tables for C _{3V} point groups		
	Ι	Orthogonality theorm (without derivation),	1	1,2
	II	Application of group theory to chemical bonding (hybrid orbitals for		1,2
4 th Week		sigma bonding in different geometries and hybrid orbitals for π -bonding)		
	III	Symmetries of molecular orbitals in BF ₃ , C ₂ H ₄ and H ₂ O	1	2,4, 8,9
	IV	Introduction of electronic Spectra of transition metal complexes: Important features of transition metal electronic spectra-Band intensities	1	6, 7, 10, 11
	Ι	Band energy, band width and sets,	1	2, 10, 11
5 th	II	Group theoretical approach to selection rule	1	2, 10, 11
Week	III	Effect of distortion and spin-orbit coupling on spectra (3d, 4d, and 5d transition series complexes)	1	2, 10, 11
	IV	Contd	1	2, 10, 11
6 th	Ι	Spectrochemical and nephelauxetic series	1	10,11
Week	II	Charge transfer spectra	1	10,11
	III	Spectroscopic ground state,	1	2, 10, 11
	IV	Orgel and Tanabe-Sugano diagram for transition metal complexes (d^1 to d^9 systems)	1	2, 10, 11
	Ι	Calculation of Dq, B and beta parameters,	1	6,7, 10,11
7 th	II	Jahn Teller effect	1	6,7, 10,11
Week	III	Electronic spectra of [Ru(bipy) ₃] ²⁺	1	11

	IV	Introduction to Reagents in Inorganic Chemistry	1	13,14
	Ι	Chelation Factors determining the stability of the chelates (effect of ring size,	1	13,14
_		oxidation state of the metal, coordination number of the metal)		
8 th	II	Contd.	1	13,14
Week	III	Use of the following reagents in analytical chemistry and	1	13-16
		chemotherapy: Grignard's reagents, Tollen's reagent		
	IV	Lucas Reagent, Fenton's reagent, Collman's reagent	1	13-16
	Ι	Dimethylglyoxime, EDTA,	1	13-16
9 th	II	8-Hydroxyquinoline, 1,10-Phenanthroline,	1	13-16
Week	III	Thiosemicarbazone, Diathiazone	1	13-16
	IV	Basics concept on principle and charge transfer of photochemistry: Absorption, Excitation	1	12, 17
	Ι	Photochemical laws, Quantum yield	1	12, 17
10 th	II	Absorption and emission for complexes with different ground state/excited state for ML_6 complexes	1	12, 17
Week	III	Contd.	1	12, 17
	IV	Potential energy function and energy levels for ML ₆ complexes,	1	12, 17
th	Ι	Photolysis rules, Flash photolysis	1	12, 17
11 th	II	Stopped flow techniques, Franck-Condon principle	1	12, 17
Week	III	Photochemical stages-primary and secondary processes,	1	12, 17
	IV	Jablonski diagram for photochemical process	1	12, 17
	Ι	Charge transfer photochemistry:	1	12, 17
		Introduction, charge transfer absorption spectra,		
12 th Week	Π	Types of charge transfer excitation and their energy level scheme for charge transfer excitation	1	12, 17
	III	Contd.	1	12, 17
	IV	Types of reactions observed by charge transfer metal complexes	1	12, 17
13 th	Ι	Basic concept on ligand field photochemistry of transition metal	1	12, 17
Week		complexes:		
	TT	Photochemistry of Cr(III)complexes: Photo substitutions,	1	10 17
	II	Properties of ligand field excited states	1	12, 17
	III	Photo aquation reaction, Photolysis rule	1	12, 17
14 th	IV	Photoisomerization, Photo racemization	1	12, 17
	I	Photoanation Reactions, sensitizer, Electron transfer process,	1	12, 17
Week	III	Mechanism of photosensitization, photo reactive excited state The doublet hypothesis, Role of quartet excited states	1	12, 17
			1	12, 17
15 th	IV	Photophysics and photochemistry of ruthenium polypyridyl complexes,	1	12, 17
	1	Photo redox properties of Ce(III) and Ce(IV) complexes	1	12, 17
Week	II	Photochemistry of Cu(II) (1,3-diketone) complexes	1	12, 17
	III	Ligand-field Photo chemistry of compounds with metal-metal bonding,	1	12, 17
	IV	Reineck's salt chemical actinometer	1	12, 17

References:

- 1. D. M. Bishop, GroupTheory and Chemistry, RevisedEd., DoverPublications, 1993.
- 2. F.A. Cotton, *Chemical Applications of Group Theory*, 3rd Revised Ed., Wiley-Blackwell, 1990.
- 3. G. M. Barrow, Introduction to Molecular Spectroscopy, McGraw-HillInc., US, 1962.
- 4. J. M. Hollas, Chapman and Hall, SymmetryinMolecules, London, 1972.
- 5. H.H. Jaffeand M. Orchin, Symmetry in Chemistry, Dover Publications, 2002.
- 6. D. C. Harris and M. D. Bertolucchi, *Symmetry and Spectroscopy: An introduction to Vibrational and Electronic spectroscopy*, DoverPublications,1990
- 7. K.V.Reddy, Symmetry and Spectroscopy of Molecules, NewAgeInternational, 2009.
- 8. K. Bansal, *Group Theory and Symmetry in Chemistry*, 1st Ed., Campus Books International, 2006.
- 9. S.F.A. Kettle, *Symmetry and Structure*, 2nd Ed., John Wiley and Sons,1995.
- 10. A.B.P. Lever, *Inorganic Electronic Spectroscopy*, Elsevier, Amsterdam, Oxford, NewYork, 1984.
- 11. I. B. Bersuker, *Electronic Structure and Properties of Transition Metal Compounds: Introduction to the Theory*, 2ndEd., John Wiley & Sons,2010
- 12. A.W. Adamson and P.D. Fleischauer, *Concepts of Inorganic Photochemistry*, John Wiley &Sons, NewYork, 1975
- 13. S.F.A. Kettle, *Physical Inorganic Chemistry-A Coordination Chemistry*, Academic Publishers, Oxford University Press, 1996.
- 14. D. Farrusseng, Metal-OrganicFrameworks, Wiley, 2011.
- 15. L. R. MacGillivray, Metal-Organi cFrameworks: Design and Application, Wiley, 2010.
- 16. B.Chenand G. Qian, Metal-OrganicFrameworks for Photonics Applications, Springer, 2014.
- 17. J. Ferraudi, Elements of Inorganic Photochemistry, Wiley, NewYork, 1988

Five-year Integrated M.Sc. Chemistry Teaching Plan (Feb 2021-June 2021)

Semester:	VIII
Course:	Group Theory and Spectroscopy (ICCHM8C002T)
Course Teacher:	Dr. Tapta Kanchan Roy

Week	Lecture No./Day	Topic to be Taught	No of Hours	Suggested Readings
	Ι	Introduction to spectroscopy	1	1, 2
	II	Basics of rotational spectroscopy	1	1, 2
1 st	III	Classification of rotors, Diatomic and linear	1	1, 2 1, 2
-		polyatomic molecules, Transition frequencies or wave		
Week		numbers		
	IV	Rotational energy levels of polyatomic molecules,	1	1, 2
		Intensities, Centrifugal distortion		
	Ι	Symmetric rotor molecules, Stark effect in	1	1, 2, 3
		diatomic, linear and symmetric rotor molecules		
$2^{\rm nd}$	II	Asymmetric rotor molecules, Spherical rotor	1	1, 2, 3
-		molecules.		
Week	III	Introduction to RAMAN spectroscopy and basics of	1	1, 2, 3
		Rotational Raman spectroscopy		
	IV	Theory of rotational Raman scattering	1	1, 2, 3
	Ι	Rotational Raman spectra of diatomic and linear	1	1, 2, 3
		polyatomic molecules		
3^{rd}	II	Rotational Raman spectra of symmetric	1	1, 2, 3
Week		and asymmetric rotor molecules		
	III	Structure determination from rotational constants.	1	1, 2, 3
	IV	Numerical	1	1, 2, 3
	Ι	Introduction of vibrational spectroscopy	1	1, 2, 3
4^{th}	II	Diatomic molecules, Infrared spectra	1	1, 2, 3
	III	Raman spectra, Anharmonicity	1	1, 2, 3
Week	IV	Vibration-rotation spectroscopy and spectral branches,	1	1, 2, 3, 8
		Polyatomic molecules		
	Ι	Normal modes and vibrations of polyatomic molecules	1	1, 2, 3, 8
	II	Group vibrations, Number of normal vibrations of	1	1, 2, 3, 8 1, 2, 3, 8
5^{th}		each symmetry species		
Week	III	Vibrational selection rules for IR spectra,	1	1, 2, 3, 8
	IV	Vibrational selection rules for RAMAN spectra,	1	1, 2, 3, 8
		Exclusion principle		
	Ι	Anharmonicity	1	1, 2, 3, 8
6^{th}	II	potential energy surfaces.	1	1, 2, 3, 8
Week	III	Numerical	1	1, 2, 3, 8
	IV	Class test-I	1	1, 2, 3, 8
7^{th}	Ι	Introduction to electronic spectroscopy	1	1, 2, 3, 8
Week	II	Basics of Atomic spectroscopy, Electronic angular	1	1, 2, 3, 8

		momentum		
-	III	Term symbol	1	1, 2, 3, 8
	IV	Photoelectron spectroscopy, Electronic spectroscopy of diatomic molecules	1	1, 2, 3, 8
	Ι	Franck-Condon principle, Selection rules	1	1, 2, 3, 8
_	II	Mid term exam	1	1, 2, 3, 8
8^{th}	III	Walsh diagram and molecular geometry	1	1, 2, 3, 8
Week	IV	The electronic spectra of polyatomic molecules, $d-d$ transitions, Charge-transfer transitions, $\pi^* \leftarrow \pi$ and $\pi^* \leftarrow n$ transitions,	1	1, 2, 3, 8
9 th	Ι	Resonance Raman transitions and application, Radiative and non-radiative decay-internal conversion and intersystem crossing	1	1, 2, 3, 8
Week	II	Fluorescence and phosphorescence, Jablonski diagram	1	1, 2, 3, 8
	III	Principles of Laser and its applications.	1	1, 2, 3, 8
	IV	Numerical	1	1, 2, 3, 8
	Ι	Introduction to group theory	1	1, 4, 5, 6, 7 4, 5, 6, 7
10 th Week	II	Definition of group, Subgroup, Relation between order of a finite group and its sub-group, classes	1	4, 5, 6, 7
WCCK	III	Contd.	1	4, 5, 6, 7
	IV	Contd., Numerical	1	4, 5, 6, 7
	Ι	Point symmetry group, Symmetry classification of molecules with examples	1	4, 5, 6, 7
11^{th}	II	Contd.	1	4, 5, 6, 7
Week	III	Contd.	1	4, 5, 6, 7
	IV	Elements of group theory: Dipole moment and optical isomerism.	1	4, 5, 6, 7
	Ι	Representation of groups by matrices, Character of the representation	1	1, 4, 5, 6, 7
12^{th}	II	Reducible and irreducible representations	1	1, 4, 5, 6, 7
Week	III	Contd.	1	1,4, 5, 6, 7
	IV	The great orthogonality theorem (without proof) and its importance,	1	4, 5
	Ι	Construction of character tables and their applications	1	4, 5, 6, 7
13 th	Π	Contd.	1	4, 5, 6, 7
	III	Class test-II	1	4, 5, 6, 7
Week -	IV	Determination of IR/RAMAN active modes of molecular vibrations	1	4, 5, 6, 7
	Ι	Contd.	1	4, 5, 6, 7
14^{th}	II	Contd.	1	4, 5, 6, 7
Week	III	Symmetry and molecular orbital theory.	1	4, 5, 6, 7
F	IV	Contd.	1	4, 5, 6, 7
	Ι	Contd.	1	4, 5, 6, 7
15^{th}	II	Tutorials	1	4, 5, 6, 7
Week	III	Problem solving	1	4, 5, 6, 7
		Problem solving	1	4, 5, 6, 7

REFERENCES

- 1. P. W. Atkins and J. de Paula, *The Elements of Physical Chemistry*, Oxford University Press, 11th Ed., 2018.
- 2. C. Banwell and E. McCash, *An Introduction to Molecular Spectroscopy*, McGraw Hill college, 5thEd., 2013.
- 3. J. Michael Hollas, Modern Spectroscopy, Wiley, 4th Ed., 2004..
- 4. F. A. Cotton, Chemical Applications of Group Theory, Wiley, 3rd Ed., 2008.
- 5. D. C. Harris and M. D. Bertolucchi, Symmetry and spectroscopy: An introduction to
- 6. vibrational and electronic spectroscopy, Dover Publications, New Ed., 1990.
- 7. D. M. Bishop, Group Theory and Chemistry, Dover Publications Inc.; New Ed., 1993.
- 8. B. R. Puri, L. R. Sharma and M. S. Pathania, *Principles of Physical Chemistry*, Vishal Publishing Co., 47th Ed., 2017.

Five-year Integrated M.Sc. Chemistry Teaching Plan (Jan 2021-July 2021)

Semester:	VIII
Course:	Organic Synthesis and Reaction Mechanism (ICCHM8E001T)
Course Teacher:	Dr. Princy Gupta

Week	Lecture No./Day	Topic to be Taught	No of Hours	Suggested Readings
	I	Aliphatic nucleophilic substitution: SN1, SN2,	1	1, 2, 3, 4
		Reactivity, Structural and solvent effects,		
		Stereochemical aspects,		
	II	SNI and SET mechanisms, Reactivity,	1	1, 2, 3, 4
1 st		Structural and solvent effects, Stereochemical		
Week		aspects,		
	III	The neighboring group mechanism, Substitution	1	1, 2, 3, 4
		in norbornyl and bridge-head systems,		
	IV	Substitution at benzylic, allylic and	1	1, 2, 3, 4
		vinylic carbons, Substitution at <i>sp</i> ² carbons,		
	Ι	Alkylation and acylation of amines, Alkylation	1	1, 2, 3, 4
		and acylation of active methylene compounds,		
2^{nd}	II	Hydrolysis of esters	1	1, 2, 3, 4
Week	III	Claisen and Dieckmann condensation	1	1, 2, 3, 4
	IV	Aromatic nucleophilic substitution: SNAr via	1	1, 2, 3, 4 1, 2, 3, 4
		Meisenheimer complex		
	Ι	Benzyne and SRN1 mechanisms, Reactivity,	1	1, 2, 3, 4
	II	Cine substitution, Chichibabin reaction.	1	1, 2, 3, 4
3 rd	III	Electrophilic substitution: SE1, SE2 and SEi	1	1, 2, 3, 4
Week		Mechanisms, Aromatic electrophilic substitution		
WEEK		via Wheland intermediates,		
	IV	Orientation and reactivity, Ortho effect,	1	1, 2, 3, 4
		Substitution of H+ versus ipsosubstitution,		
	Ι	Ar-Halogen, Ar-SO ₃ H	1	1, 2, 3, 4
	II	Ar-NO2 bond formation, Diazonium coupling,	1	1, 2, 3, 4
4 th	III	Friedel-Crafts related reactions and Vilsmeier-	1	1, 2, 3, 4
4 Week		Haack.		
WCCK	IV	Addition reactions: Addition to C-C multiple	1	1, 2, 3, 4
		bonds, Electrophilic, nucleophilic and free		
		radical addition, Mechanisms		
	Ι	Orientation and reactivity, Stereochemistry of	1	1, 2, 3, 4
		addition reactions of alkenes: Bromine addition,		
5 th	II	Hydrogen bromide addition, Catalytic	1	1, 2, 3, 4
Week		hydrogenation		
WEEK	III	Hydroboration-oxidation,	1	1, 2, 3, 4
	IV	1,2 and 1,4-additions of organometallic reagents	1	1, 2, 3, 4
		(Mg, R2CuLi		

	Ι	Michael addition	1	1, 2, 3, 4
-	I	Addition to C-heteroatom multiple bond	1	1, 2, 3, 4
6 th	III	Elimination reactions: E1, E2 Mechanisms,	1	1, 2, 3, 4 1, 2, 3, 4
Week	111	Regioselectivity, Stereochemistry of elimination	1	1, 2, 3, 4
	IV	E1cB Mechanisms, Regioselectivity,	1	1, 2, 3, 4
		Stereochemistry of elimination:		
	Ι	Cyclic and acyclic systems, Bredt's rule,	1	1, 2, 3, 4
	II	Pyrolytic elimination, Chugaev reaction,	1	1, 2, 3, 4 1, 2, 3, 4
		Hofmann degradation, Shapiro reaction, Cope		
7^{th}		elimination		
	III	Competition between substitution and	1	1, 2, 3, 4
Week		elimination		
	IV	Molecular rearrangements: Mechanism and	1	1, 2, 3, 4
		stereochemical aspects of Pinacol-pinacolone,		
		Demjanov rearrangements		
	Ι	Wagner-Meerwein Pummerer rearrangements	1	1, 2, 3, 4
8 th	II	Beckmann, Schmidt Hofmann rearrangements	1	1, 2, 3, 4
Week	III	Benzilbenzilic acid, Favorskii rearrangements	1	1, 2, 3, 4
	IV	Wolff, Fries, Stevens rearrangements	1	1, 2, 3, 4
	Ι	Curtius, Lossen rearrangements	1	1, 2, 3, 4
	II	Baeyer-Villiger, Sommelet-Hauser	1	1, 2, 3, 4
		rearrangements		
9 th Week	III	Problems on rearrangement	1	1, 5, 6, 7
-	IV	Retrosynthetic analysis: Disconnection	1	5,6
		approach, Synthons and synthetic equivalents		
	Ι	Transform, Functional group interconversion,	1	5,6
		Umpolung, Chemo-, regio and stereoselectivities,		
	II	One group disconnection: Alcohols and carbonyl	1	5,6
10 th		compounds		
Week	III	Two group disconnections: 1,2- difunctional	1	5,6
		compounds		
	IV	Two group	1	5,6
		disconnections: 1,3-difunctional compounds,		
	Ι	Two group	1	5,6
		disconnections: 1,4-difunctional compounds,		
11^{th}	Π	Two group	1	5,6
Week		disconnections:1,5-difunctional compounds,		
WEEK	III	Two group	1	5,6
		disconnections: 1,6-difunctional compounds,		
	IV	Diels-Alder reactions	1	5, 6
12 th	Ι	Robinson annulation	1	5,6
Week	II	Michael addition	1	5,6

	III	Retrosynthetic analysis of longifolene	1	5, 6
	IV	Protecting groups in organic synthesis: Importance, Protection and deprotection of	1	7,8
	Ι	hydroxyl groupsMOM, MTM, SMOM and THP ethers	1	7,8
13 th	II	Silyl ethers (TMS, TES, TIPS, TBDMS and TBDPS ethers)	1	7,8
Week	III	Protection for 1,2- and 1,3-diols	1	7,8
	IV	Protection and deprotection of carbonyl compounds: Acyclic and cyclic acetals and ketals	1	7,8
	Ι	monothio and dithioacetals and ketals	1	7,8
14 th	II	Monoprotection of dicarbonyl compounds,	1	7,8
Week	III	Protection of amines, Boc, Cbz, PMB as protecting groups	1	7,8
	IV	Bn, Ac, Bz and Ts as protecting groups	1	7,8
1 cth	Ι	Common protecting groups for carboxylic acids and thiols	1	7,8
15 th Week	II	Contd.	1	7,8
week	III	Revision of Unit I	1	
	IV	Revision of Unit II	1	
	Ι	Revision of Unit III	1	
16 th	II	Revision of Unit IV	1	
Week	III	Revision of Unit V, Discussion of model question papers	1	
	IV	Discussion of model question papers	1	

REFERENCES

- 1. M. B. Smith and J. March, March's Advanced Organic Chemistry, 6th Ed., Wiley, New Jersey, 2007.
- 2. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry: Part A: Structure and Mechanisms, 5th Ed., Springer, New York, 2007.
- 3. J. Clayden, N. Greeves, S. Warren and P. Wothers, Organic Chemistry, Oxford University Press, Oxford, 2001.
- 4. J. McMurry, Organic Chemistry, 5th Ed., Brooks/Cole, New York, 2000.
- 5. S. Warren and P. Wyatt, Organic Synthesis: The Disconnection Approach, 2nd Ed., Wiley, 2008.
- 6. S. Warren and P. Wyatt, Organic Synthesis: Strategy and Control, Wiley, 2007.
- 7. Philip J. Kocienski, Protecting groups, 3rd Ed., Thieme, 2005.
- 8. P. G. M. Wuts and T. W. Greene, Greene's Protective Groups in Organic Synthesis, 4th Ed., Wiley, 2006.

CENTRAL UNIVERSITY OF JAMMU Rahya-Suchani (Bagla), District-Samba, Jammu-181143, (J&K) India

Five-year Integrated M.Sc. Chemistry Teaching Plan (February 2021-June 2021)

Semester:	VIII
Course:	Organic Spectroscopy and Organometallics (ICCHM8F001T)
Course Teacher:	Dr. M. Karuppasamy

Week	Lecture No./Day	Topic to be Taught	No of Hours	Suggested Readings
	I	UV-VIS spectroscopy: Woodward-Fieser rules	1	1-3
	II	UV spectra of aromatic and heterocyclic compounds	1	1-3
	III	Contd.	1	1-3
1 st	III IV	Applications of UV-VIS spectroscopy in organic	1	1-3
Week	1 V	chemistry	1	1-5
	Ι	IR Spectroscopy: FT technique	1	1-3
	II	Characteristic functional group absorptions	1	1-3
2 nd	III	Factors influencing group frequencies, Hydrogen	1	1-3
Week		bonding, Overtones, Combination bands, Fermi		
		Resonance		
	IV	NIR spectroscopy	1	1-3
	Ι	Optical rotatory dispersion and circular dichroism:	1	2
3rd		Introduction to theory and terminology, Cotton effect,		
Week		ORD curves		
WCCK	II	Axial haloketone rule and its applications, Octant rule	1	2
	III	Applications of ORD to determine absolute	1	2
		configuration of monocyclic ketones		
	IV	Comparison between ORD and CD – their inter	1	2
		relationships		
	Ι	NMR spectroscopy: 1H-NMR: FT technique,	1	1-3
		Shielding, Chemical shift, Diamagnetic anisotropy		
4 th	II	Integration, Exchangeable hydrogens, Chemical	1	1-3
Week		equivalence, Magnetic equivalence		
	III	Exchangeable hydrogens, Chemical equivalence, Magnetic equivalence	1	1-3
	IV	Spin coupling, Non-first order spectra, Spin systems	1	1-3
		(AB, AX, AB2, AX2, AMX, ABX, ABC etc.),		
	Ι	Geminal, Vicinal and Long range coupling, Coupling constants,	1	1-3
5 th	II	Spin decoupling, Relaxations, Nuclear Overhauser effect, NMR shift reagents	1	1-3
Week	III	Variable temperature 1H-NMR, Coupling of proton with ¹³ C, ¹⁹ F, ³¹ P and ²⁹ Si	1	1-3
	IV	¹³ C-NMR: Proton-decoupled and off-resonance, Chemical shifts	1	1-3
6 th	Ι	DEPT (45, 90 and 135)	1	1-3
Week				
	II	2D NMR: Introduction, HOMOCOSY, HETCOR	1	1-4

[III	HMQC, HMBC	1	1-4
	IV	INADEQUATE and NOESY	1	1-4
	Ι	Mass spectrometry: Mass spectrometry, Principle,	1	1-3
		Basic instrumentation		
7 th	II	Ionization techniques – EI, CI,	1	1-3
Week	III	FD and FAB	1	1-3
WCCK	IV	Fragmentation, Molecular ion peak, Base peak	1	1-3
	Ι	Metastable ions, Isotopes, Nitrogen rule	1	1-3
8 th	II	McLafferty rearrangement, Retro Diels-Alder	1	1-3
Week	III	Characteristic fragmentation patterns of hydrocarbons,	1	1-3
WEEK		ethers,		
	IV	alcohols, phenols,	1	1-3
	Ι	ketones, aldehydes,	1	1-3
9 th	II	carboxylic acids and amides	1	1-3
Week	III	HRMS, Introduction to ESI-MS	1	1-3
	IV	Introduction to MALDI-TOF	1	1-3
10 th	I-IV	Applications of spectroscopic techniques: Problems	4	1-4
Week		on the structural elucidation of organic		
		compounds using UV, IR, NMR and Mass techniques.		
11 th	I-IV	Contd.	4	1-4
Week				
12 th	I-IV	Contd.	4	1-4
Week				7.10
	Ι	Organometallic reagents: Organozinc and copper	1	7-12
13 th		reagents: Preparation	1	7.10
Week	II	Functionalized zinc and copper reagents, Synthetic	1	7-12
	III	applications	1	7-12
	111	Gilman reagents, Reformatsky reaction, Simmons-Smith	1	/-12
	IV	reaction Contd.	1	7-12
	Ι	Grignard and organolithium reagents in organic	1	7-12
4 h	тт	synthesis Control	1	7-12
14 th	II	Contd.	1	7-12
Week	III	Organoboron reagents	-	7-12
	IV I	Synthetic application of Sn and Si reagents Wittig, Horner-Wadsworth-Emmons Reactions	1	7-12
	I	Cross-coupling reactions (Suzuki, Heck), Ring closing	1	7-12
th	11	metathesis	1	/-12
15 th	III	Contd.	1	7-12
Week	IV	Revision of Units I and II	1	/ 12
	I	Revision of Units III and IV	1	
1 _th	I	Revision of Unit V	1	
16^{th}	III	Discussion of model question papers	1	
Week	IV	Discussion of model question papers	1	
	1 V	Discussion of model question papers	1	

REFERENCES

- R. M. Silverstein and F. X. Webster, *Spectroscopic Identification of Organic Compounds*, 6th Ed., Wiley, 2004.
 P. S. Kalsi, *Spectroscopy of Organic Compounds*, New Age International, 6th Ed. 2006.
- Ed., 2006.

- 3. W. Kemp, Organic Spectroscopy, Palgrave, 2008.
- 4. H. Friebolin, *Basic One and Two Dimensional NMR Spectroscopy*, 5th Ed., Wiley-VCH, 2010.
- 5. A. Upadhyay, K. Upadhyay and N. Nath, *Biophysical Chemistry Principles and Techniques*, 4th Ed., Himalaya Publishing House, 2010.
- 6. H. H. Willard, L. L. Merritt, J. A. Dean and F. A. Settle, *Instrumental Methods of Analysis*, 7th Ed., CBS Publishers & Distributors, 2004.
- 7. F. A. Carey and R. J. Sundberg, *Advanced Organic Chemistry: Part A: Structure and Mechanisms*, 5th Ed., Springer, New York, 2007.
- 8. F. A. Carey and R. J. Sundberg, *Advanced Organic Chemistry: Part B: Reactions and Syntheses*, 5th Ed., Springer, New York, 2007.
- 9. J. Clayden, N. Greeves, S. Warren and P. Wothers, *Organic Chemistry*, Oxford University Press, Oxford, 2001.
- 10. M. B. Smith, Organic Synthesis, 2nd Ed., McGraw-Hill, New Delhi, 2004.
- 11. F. A. Carey, Organic Chemistry, McGraw-Hill, New Delhi, 2000.
- 12. J. McMurry, Organic Chemistry, 5th Ed., Brooks/Cole, New York, 2000.