

Department of Chemistry and Chemical Sciences CENTRAL UNIVERSITY OF JAMMU Rahya-Suchani (Bagla), District-Samba, Jammu-181143, (J&K) India

Five-year Integrated B.Sc. (Hons.) M.Sc. Chemistry Teaching Plan (Aug 2022-Dec 2022)

Semester:	V
Course:	Properties of Inorganic Metal Complexes (ICCHM4C005T)
Course Teacher:	Dr. Sujata Kundan

Week	Lecture No./Day	Topic to be Taught	No of Hours	Suggested Readings
1 st Week	Ι	Unit-I	1	1, 2, 3, 9
		Electronic spectra of transition metal complexes-I:		
		Quantum numbers, Types of electronic transitions.		
	II	Selection rules for <i>d</i> - <i>d</i> transitions, Spectroscopic ground	1	1, 2, 3, 9
		states.		
	III	Term symbols, Microstates, Spectrochemical series of	1	1, 2, 3, 9
		ligands.		
	IV	Orbital and spin magnetic moments, Orbital contribution,	1	1, 2, 3, 9
l		Quenching of magnetic moment.		
·	Ι	Russel-Saunders Coupling: <i>l-l</i> coupling, <i>J-J</i> coupling, <i>L-S</i>	1	1, 2, 3, 9
and		coupling.		
2^{nd}	II	To be Contd	1	1, 2, 3, 9
Week	III	Derivation of Russell-Saunders terms: p^2 configuration.	1	1, 2, 3, 9
	IV	Derivation of Russell-Saunders terms: d^2 configuration.	1	1, 2, 3, 9
	Ι	Orgel energy level diagram for d^1 to d^9 states,	1	1, 2, 3, 9
	_	Nepheleuxatic effect.	_	-, _, _, , ,
	II	To be Contd	1	1, 2, 3, 9
ord	III	To be Contd	1	1, 2, 3, 9
3 rd	IV	Unit-II	1	3, 4, 5, 6, 9
Week		Magnetic properties of transition metal complexes-I:		- 7 7 - 7 - 7 -
		Definition of magnetic properties, Types of magnetic		
		bodies: Diamagnetism, Paramagnetism Ferromagnetism,		
		Ferrimagnetism and Antiferromagnetism.		
	Ι	To be Contd	1	3, 4, 5, 6, 9
Ath	II	Mechanism of anti-ferromagnetic interaction, Spin-only	1	3, 4, 5, 6, 9
4 th		formula.		
Week	III	Spin orbit coupling, Lande interval rule.	1	3, 4, 5, 6, 9
	IV	Energies of <i>J</i> -levels.	1	3, 4, 5, 6, 9
	Ι	Curie equation, Curie and Curie-Weiss law.	1	3, 4, 5, 6, 9
	II	Temperature independent paramagnetism(TIP), Derivation	1	3, 4, 5, 6, 9
5^{th}		and application of Van Vleck susceptibility equation.		
Week	III	Magnetic exchange coupling and spin crossover (Low spin	1	3, 4, 5, 6, 9
		and high spin cross over).		
	IV	Anomalous magnetic moments.	1	3, 4, 5, 6, 9
6 th Week	Ι	Magnetic properties of binuclear and polynuclear	1	3, 4, 5, 6, 9
		complexes.		
	II	Unit-III	1	3, 4, 5, 6, 9
		Magnetic properties of transition metal complexes-II:		
		Magnetic susceptibility-orbital and spin effects.		
	III	Importance of magnetic susceptibility, Diamagnetism and	1	3, 4, 5, 6, 9
		Pascals's constant.		

Department of Chemistry and Chemical Sciences CENTRAL UNIVERSITY OF JAMMU Rahya-Suchani (Bagla), District-Samba, Jammu-181143, (J&K) India

	IV	Gouy's method, Faraday method.	1	3, 4, 5, 6, 9
	Ι	Vibrating sample magnetometer, SQUID, NMR method	1	3, 4, 5, 6, 9 3, 4, 5, 6, 9
		for measuring magnetic susceptibility.		- , , - , - , -
7 th	II	To be Contd	1	3, 4, 5, 6, 9
	III	Correlation of μ s and μ eff values, Orbital contribution to	1	3, 4, 5, 6, 9 3, 4, 5, 6, 9
Week		magnetic moments.	-	0, 1, 0, 0, 2
	IV	Magnetic properties based on crystal field models:	1	3, 4, 5, 6, 9
		Octahedral, Tetrahedral.	-	0, 1, 0, 0, ,
	Ι	To be Contd	1	3, 4, 5, 6, 9
oth	II	Trigonal bipyramidal, Square pyramidal.	1	3, 4, 5, 6, 9
8 th	III	To be Contd	1	3, 4, 5, 6, 9
Week	IV	tetragonally distorted octahedral complexes, Diamagnetism	1	3, 4, 5, 6, 9
		in atoms and polynuclear systems.		, , , , ,
	Ι	To be Contd	1	3, 4, 5, 6, 9
Γ	II	Unit-IV	1	1, 2, 7, 8, 9
		Metal π -complexes–I: Metal carbonyls, Classification of		
9 th		metal carbonyls.		
Week	III	Effective atomic number, Preparation and important	1	1, 2, 7, 8, 9
WEEK		reactions (substitution, nucleophilic, electrophilic,		
		reduction reactions) of metal carbonyls, Structure and		
		chemical bonding in metal carbonyls.		
	IV	To be Contd	1	1, 2, 7, 8, 9
	Ι	To be Contd	1	1, 2, 7, 8, 9
10 th	II	To be Contd	1	1, 2, 7, 8, 9
Week	III	Preparation of anionic metal carbonyl complexes and	1	1, 2, 7, 8, 9
WEEK		Substituted metal carbonyl complexes.		
	IV	To be Contd	1	1, 2, 7, 8, 9
	Ι	Vibrational spectra of metal carbonyls for bonding and	1	1, 2, 7, 8, 9
		structural elucidation, Application of metal carbonyls		
_		complexes.		
11 th	II	To be Contd	1	1, 2, 7, 8, 9
Week	III	To be Contd	1	1, 2, 7, 8, 9 1, 2, 7, 8, 9
	IV	Unit-V	1	1, 2, 7, 8, 9
		Metal π -complexes-II: Dinitrogen complexes-		
		Preparation, Structure, Bonding, and important reactions		
	T	with transition metals.	1	10700
_	I	To be Contd	1	1, 2, 7, 8, 9
12 th	II	To be Contd	1	1, 2, 7, 8, 9
Week	III	Dioxygen complexes-Preparation, Structure, Bonding, and	1	1, 2, 7, 8, 9
_	IV	important reactions with transition metals.	1	1 2 7 8 0
		To be Contd	1	1, 2, 7, 8, 9
F	I II	To be Contd	1	1, 2, 7, 8, 9
13^{th}	II	Metal nitrosyls complexes-Preparation, Structure,	1	1, 2, 7, 8, 9
Week	III	Bonding, and important reactions with transition metals.To be Contd	1	12780
	III IV	To be Contd	1	1, 2, 7, 8, 9
				1, 2, 7, 8, 9
14 th	I II	Ligating behaviour of tertiary phosphines.	1	1, 2, 7, 8, 9
Week		Isopoly and heteropoly acids.	1	1, 2, 7, 8, 9
	III IV	To be Contd To be Contd	1	1, 2, 7, 8, 9
	1 V		1	1, 2, 7, 8, 9

Department of Chemistry and Chemical Sciences CENTRAL UNIVERSITY OF JAMMU Rahya-Suchani (Bagla), District-Samba, Jammu-181143, (J&K) India

15 th Week	Ι	Salts of molybdenum and tungsten.	1	1, 2, 7, 8, 9
	Π	To be Contd	1	1, 2, 7, 8, 9
	III	To be Contd	1	1, 2, 7, 8, 9
	IV	Revision of Units I, Discussion of model question papers	1	1,7
16 th Week	Ι	Revision of Units II, Discussion of model question papers	1	
	Π	Revision of Units III, Discussion of model question papers	1	
	III	Revision of Unit IV, Discussion of model question papers	1	
	IV	Revision of Units V, Discussion of model question papers	1	

REFERENCES

- 1. B. R. Puri, L. R. Sharma and K. C. Kalia, *Principal Of Inorganic Chemistry*, Vishal Publishing Co., 2020.
- 2. Malik, Tuli and Madan, *Selected Topics in Inorganic Chemistry*, S. Chand & company, New Delhi, 2009.
- 3. P. Atkins, T. Overton, J. Rourke, M. Weller and F. Armstrong, *Inorganic Chemistry*, Oxford University Press, 2006.
- 4. A. Earnshaw, Introduction to Magnetochemistry, 1st Ed., Academic Press, 1968.
- 5. F. B. Mabbs, D. J. Machin, et al., *Magnetism and Transition Metal Complexes*, Dover Books, 2008.
- 6. A. Syamal, *Elements of Magnetochemistry*, 2nd Ed., East-West Press Pvt. Ltd., 2004.
- 7. J. E. Huhey, Harpes and Row, Inorganic Chemistry, 4th Ed., Pubs: Harper Collins 2006
- 8. J. D. Lee, Concise Inorganic Chemistry, 5th Ed., John Wiley & Sons, 2008.
- 9. In-house Study material.