The Reduced van der Waals Equation of State

Avinash Chand Yadav
Department of Physics \& Astronomical Sciences
Central University of Jammu
Samba 181 143, India.
jnu.avinash@gmail.com

May 22, 2017

The van der Waals equation of state

$$
\begin{equation*}
\left(P+\frac{a}{V^{2}}\right)(V-b)=N k_{B} T \tag{1}
\end{equation*}
$$

where a and b are constants characteristic of a particular gas, and k_{B} the Boltzmann constant. P, V, and T are as usual the pressure, volume, and temperature.

- It turns out that if we examine the isotherms of a van der Waals gas on a $P-V$ plot, one sees a point of inflection on the isotherm corresponding to the critical point of a gas. In other words, we have

$$
\begin{equation*}
\left(\frac{\partial P}{\partial V}\right)_{T=T_{c}}=0 \text { and }\left(\frac{\partial^{2} P}{\partial V^{2}}\right)_{T=T_{c}}=0 \tag{2}
\end{equation*}
$$

Critical point

- Our goal is to derive a "reduced" form of the van der Waals equation that will not include the constants a and b.
- We first write the van der Waals equation in the form

$$
\begin{equation*}
P=\frac{N k_{B} T}{V-b}-\frac{a}{V^{2}} \tag{3}
\end{equation*}
$$

- Next we find the first and second derivatives and set each one equal to zero:

$$
\begin{align*}
\left(\frac{\partial P}{\partial V}\right)_{T=T_{c}} & =-\frac{N k_{B} T_{c}}{\left(V_{c}-b\right)^{2}}+\frac{2 a}{V_{c}^{3}}=0 \tag{4}\\
\left(\frac{\partial^{2} P}{\partial V^{2}}\right)_{T=T_{c}} & =\frac{2 N k_{B} T_{c}}{\left(V_{c}-b\right)^{3}}-\frac{6 a}{V_{c}^{4}}=0 \tag{5}
\end{align*}
$$

- Solving these we find $V_{c}=3 b, N k_{B} T_{c}=8 a / 27 b$, and $P_{c}=8 a / 27 b^{2}$.

Reduced equation of state

- Next, we define the following "reduced" quantities: $\bar{P}=P / P_{c}$, $\bar{V}=V / V_{c}$, and $\bar{T}=T / T_{c}$.
- Then van der Waals equation in terms of reduced parameters reads as

$$
\begin{equation*}
\left(\bar{P}+\frac{3}{\bar{V}^{2}}\right)(3 \bar{V}-1)=8 \bar{T} \tag{6}
\end{equation*}
$$

Compressibility ratio

- It is of interest to consider the "compressibility ratio"

$$
\begin{equation*}
Z_{c}=\frac{P_{c} V_{c}}{N K_{B} T_{c}} . \tag{7}
\end{equation*}
$$

- For an ideal gas, this quantity is of course one. For a van der Waals gas, $Z_{c}=3 / 8$.

