TEACHING PLAN		
Course Title: Partial Differential Equations		Duration of Examination: 3 hours
Course Code: PGAMT2E005T		Maximum Marks: 100
Course Instructor: Dr. Sanjay Kumar		
Unit I		
LECTURE I	Introduction to PDE	
LECTURE 2	Formulation of first order partial differential equations	
TUTORIAL 1	Exercises and examples related to Lecture I and Lecture 2	
LECTURE 3	Derivation of PDE by elimination method of arbitrary functions	
LECTURE 4	Solution of linear first order partial differential equations (Lagrange method)	
TUTORIAL 2	Examples and exercises related to Lecture 3 and Lecture 4	
LECTURE 5	Integral surfaces passing through a given curve	
LECTURE 6	The Cauchy Problem for first order PDE	
TUTORIAL 3	Examples and Exercises rleated to Lecture 5 and Lecture 6	
LECTURE 7	Lagranges linear PDE of first order	
LECTURE 8	Lagranges non-linear PDE of first order	
TUTORIAL 4	Exercises related to Lecture 7 and Lecture 8	
Unit II		
LECTURE 9	Compatible systems of first order partial differential equations	
LECTURE 10	Examples of compatible systems of first order partial differential equations	
TUTORIAL 5	Exercises related to Lecture 9 and Lecture 10	
LECTURE 11	Charpits method for solving first order non linear Partial differential equations	
LECTURE 12	Examples of Charpits method	
TUTORIAL 6	Exercises related to Lecture 11 and Lecture 12	
LECTURE 13	Classification of second order Partial Differential Equations	
LECTURE 14	Canonical form for Elliptic equations	
TUTORIAL 7	Exercise and examples related to Lecture 13 and Lecture 14	
LECTURE 15	Canonical form for Parabolic equations	
LECTURE 16	Canonical form for Hyperabolic equ	uations
TUTORIAL 8	AL 8 Exercises related to Lecture 15 and Lecture 16	
	Unit III	
LECTURE 17	Laplace Equation and its derivation	· · · · · · · · · · · · · · · · · · ·
LECTURE 18	Boundary value Problems	
TUTORIAL 9	Exercises related to Lecture 17 and Lecture 18	
LECTURE 19	Properties of Harmonic functions	
LECTURE 20	Spherical mean	

TUTORIAL 10	Exercises related to Lecture 19 and Lecture 20		
LECTURE 21	Mean Value theorem		
LECTURE 22	Maximum-Minimum Principle and its applications		
TUTORIAL 11	Exercises related to Lecture 21 and Lecture 22		
LECTURE 23	Separation of variables		
LECTURE 24	Dirichlet and Neumann problem for a rectangle		
TUTORIAL 12	Exercises related to Lecture 23 and Lecture 24		
Unit IV			
LECTURE 25	Occureence of the Diffusion Equation		
LECTURE 26	Elementary solutions of the diffusion equation		
TUTORIAL 13	Examples and exercises related to Lecture 25 and Lecture 26		
LECTURE 27	Boundary equations		
LECTURE 28	Examples of Boundary equations		
TUTORIAL 14	Exercises related to Lecture 27 and Lecture 28		
LECTURE 29	Dirac Delta function		
LECTURE 30	Examples of Dirac Delta function		
TUTORIAL 15	Examples and exercises related to Lecture 29 and Lecture 30		
LECTURE 31	Separation of variables method		
LECTURE 32	Examples of separation of variables method		
TUTORIAL 16	Examples and exercises related to Lecture 31 and Lecture 32		
Unit V			
LECTURE 33	Wave Equation: Derivation of one dimensional wave equation		
LECTURE 34	Intial value problem of Cauchy's type		
TUTORIAL 17	Exercises related to Lecture 33 and Lecture 34		
LECTURE 35	D' Alembert's solution		
LECTURE 36	Vibrating string-variables separable solution		
TUTORIAL 18	Exercises related to Lecture 35 and Lecture 36		
LECTURE 37	Boundary and initial value problems for two-dimensional wave equations- eigenfunction method		
LECTURE 38	Examples related to Lecture 37		
TUTORIAL 19	Exercises related to Lecture 37 and Lecture 38		
LECTURE 39	Uniqueness of solution for the wave equation		
LECTURE 40	Examples related to Lecture 39		
TUTORIAL 20	FUTORIAL 20Exercises related to Lecture 39 and Lecture 40		
Total Lectures: 40	DTotal Tutorials: 20Total = 60		

Text book:

K Sankara Rao, Introduction to partial differential equations, Prentice Hall of India, 2nd Edition, New Delhi, 2007.

Reference books:

- 1. Renardy and Rogers, An introduction to PDEs, Springer-Verlag, 1999.
- 2. Smoller, Shock Waves and reaction-diffusion equations, second edition, 1994.
- 3. Kevorkian, Partial Differential equations, Wadsworth and Brooks/ cole
- 4. F John, Partial differential equations
- 5. L C Evans, Partial differntial equations, AMS, 1998.
- 6. B Folland, Introduction to partial differential equations.
- 7. D Gilbarg and N S Trudinger, Elliptic Partial differential equations of second order.
- 8. W A Strauss, Partial differential equations, An Introduction, Wiley, John and sons 1992.
- 9. B P Parashar, Differential and Integral equations, Oscar Publication