TEACHING PLAN		
Course Title: Optimization Techniques		Duration of Examination: 3 hours
Course Code: PGAMT2C005T		Maximum Marks: 100
Course Instructor's Name: Dr. Kamlesh Kumar		
Lecture 1	Introduction to Linear Programming Problems (LPP) with examples	
Lecture 2	Solution of LPP by Graphical method	
Tutorial 1	Assignment/ Discussion/Exercises	
Lecture 3	Multiple and unbounded solution by Graphical method	
Lecture 4	Infeasible solution and application done by graphical method	
Tutorial 2	Assignment/ Discussion/Exercises	
Lecture 5	Solution of LPP by Simplex method	
Lecture 6	Convex sets in LPP and some examples	
Tutorial 3	Assignment/ Discussion/Exercises	
Lecture 7	Solution of LPP by Big-M & Two phase method	
Lecture 8	Duality in LPP and its properties	
Tutorial 4	Assignment/ Discussion/Exercises	
Lecture 9	Introduction to Assignment problems and some examples	
Lecture 10	Solution of Assignment problem	
Tutorial 5	Assignment/ Discussion/Exercises	
Lecture 11	Hungarian Method to solve the Assignment Problems	
Lecture 12	Solution of unbalanced Assignment Problems	
Tutorial 6	Assignment/ Discussion/Exercises	
Lecture 13	Introduction to Transportation Problems and some examples	
Lecture 14	Procedure of Transportation Problems	
Tutorial 7	Assignment/ Discussion/Exercises	
Lecture 15	Methods for finding initial solution and optimality	
Lecture 16	Degeneracy in Transportation problems	
Tutorial 8	Assignment/ Discussion/Exercises	
Lecture 17	Introduction to Sequencing problems and some examples	
Lecture 18	Solution for Processing of n-jobs through two machines	
Tutorial 9	Assignment/ Discussion/Exercises	
Lecture 19	Solution for Processing of n-jobs through m-machines	
Lecture 20	Total elapsed time in the Processing of n-jobs through two machines	
Tutorial 10	Assignment/ Discussion/Exercises	
Lecture 21	Introduction to Replacement problems and some examples	
Lecture 22	Model for Replacement policy of major items when money value does not change	

	and resale value is constant and maintenance cost is increasing function of time	
Tutorial 11	Assignment/ Discussion/Exercises	
Lecture 23	Model to determine the replacement policy when money value changes	
Lecture 24	Model to determine the replacement policy of items which fail all of sudden	
Tutorial 12	Assignment/ Discussion/Exercises	
Lecture 25	Introduction to Integer Programming Problems (IPP)	
Lecture 26	Solution of IPP and properties of IPP	
Tutorial 13	Assignment/ Discussion/Exercises	
Lecture 27	Branch and bound method to solve IPP	
Lecture 28	Gomory's Techniques to solve the IPP	
Tutorial 14	Assignment/ Discussion/Exercises	
Lecture 29	Unimodularity in IPP	
Lecture 30	Backward computation in IPP	
Tutorial 15	Assignment/ Discussion/Exercises	
Lecture 31	Introduction to Dynamic Programming Problems (DPP)	
Lecture 32	Some examples and its solutions for DPP	
Tutorial 16	Assignment/ Discussion/Exercises	
Lecture 33	Introduction to Non-linear programming problems (NLPP)	
Lecture 34	Solution of NLPP and some examples	
Tutorial 17	Assignment/ Discussion/Exercises	
Lecture 35	Convex and concave functions and its properties	
Lecture 36	Hessian boarded matrix and some examples	
Tutorial 18	Assignment/ Discussion/Exercises	
Lecture 37	Cohn Tucker conditions for optimizing the constraints	
Lecture 38	Introduction to Quadratic Programming Problems	
Tutorial 19	Assignment/ Discussion/Exercises	
Lecture 39	Graphical solution of NLPP	
Lecture 40	Some important examples based on NLPP and Quadratic problems	
Tutorial 20	Assignment/ Discussion/Exercises	