DEPARTMENT OF MATHEMATICS CENTRAL UNIVERSITY OF JAMMU

TEACHING PLAN			
Course Title: Complex Analysis		Duration of Examination: 3 hours	
Course Code: PGAMT2C003T		Maximum Marks: 100	
Course Instructor: Dr. Deep Singh			
Lecture 1	Review of complex numbers, stereographic projection		
Lecture 2	Chordal distance, multi-valued functions		
Tutorial	Assignment/discussion/exercises		
Lecture 3	Branches of multi-valued functions with special reference to arg z		
Lecture 4	Exponential functions, logarithm function, power functions and phase factors		
Tutorial	Assignment/discussion/exercises		
Lecture 5	Analytic functions: Limit and continuity of complex functions		
Lecture 6	Complex derivative, singularities, Cauchy-Riemann equations		
Tutorial	Assignment/discussion/exercises		
Lecture 7	Cauchy-Riemann equations in polar form		
Lecture 8	Harmonic functions and harmonic conjugate		
Tutorial	Assignment/discussion/exercises		
Lecture 9	Line integrals, piecewise smooth path		
Lecture 10	Jordan curve and Green's theorem		
Tutorial	Assignment/discussion/exercises		
Lecture 11	Independence of path, anti-derivative		
Lecture 12	Fundamental theorem of algebra		
Tutorial	Assignment/discussion/exercises		
Lecture 13	Mean value property		
Lecture 14	topic contd.		
Tutorial	Assignment/discussion/exercises		
Lecture 15	Strict maximum principal (real and complex version)		
Lecture 16	ML-estimate		
Tutorial	Assignment/discussion/exercises		
Lecture 17	Complex integration and analyticity		
Lecture 18	Cauchy's theorem		
Tutorial	Assignment/discussion/exercises		
Lecture 19	Cauchy integral formula		
Lecture 20	Cauchy integral formula for higher order derivatives		
Tutorial	Assignment/discussion/exercises		
Lecture 21	Liouville's theorem		
Lecture 22	Cauchy's inequality		
Tutorial	Assignment/discussion/exercises		
Lecture 23	Morera's theorem, Goursat's theorem		
Lecture 24	Complex form of cauchy-Riemann equations		
Tutorial	Assignment/discussion/exercises		
Lecture 25	Power series and examples		
Lecture 26	Radius of convergence and examples		
Tutorial	Assignment/discussion/exercises		
Lecture 27	Power series expansion of an analytic function		

Lecture 28	Taylor's expansion and isolated singularities	
Tutorial	Assignment/discussion/exercises	
Lecture 29	Laurent series	
Lecture 30	Residue calculas, cauchy residue theorem	
Tutorial	Assignment/discussion/exercises	
Lecture 31	Fractional residue, Jordan's lemma	
Lecture 32	Evaluation of integrals using residue theorem	
Tutorial	Assignment/discussion/exercises	
Lecture 33	Conformal mapping, Mobius transformations	
Lecture 34	composition of two mobius transformations	
Tutorial	Assignment/discussion/exercises	
Lecture 35	Translation, dilation, inversion and examples	
Lecture 36	Schawarz lemma	
Tutorial	Assignment/discussion/exercises	
Lecture 37	Conformal self-maps of the unit disk	
Lecture 38	Mapping of unit disk and upper half plane	
Tutorial	Assignment/discussion/exercises	
Lecture 39	The Riemann mapping theorem	
Lecture 40	topic continued	
Tutorial	Assignment/discussion/exercises	