TEACHING PLAN			
Course Title: Topology		Duration of Examination: 3 hours	
Course Code: MAMT- PGAMT2C001T		Maximum Marks: 100	
Course Instructor's Names: Dr. Kamlesh Kumar & Dr. Deep Singh			
Lecture 1	Introduction to topology with examples		
Lecture 2	Topological spaces, Neighbourhood and Interior		
Tutorial 1	Assignment/ Discussion/Exercises		
Lecture 3	Limit point of a set, Closure of a set		
Lecture 4	Boundary points, Exterior points		
Tutorial 2	Assignment/ Discussion/Exercises		
Lecture 5	Basis for topology and theorems based on basis		
Lecture 6	Continuity in topological spaces and theorems based on continuity		
Tutorial 3	Assignment/ Discussion/Exercises		
Lecture 7	Open mapping and closed mapping and some theorems		
Lecture 8	Subspaces, Homeomorphism and some theorems		
Tutorial 4	Assignment/ Discussion/Exercises		
Lecture 9	Introduction to connectedness in topological space		
Lecture 10	Set of disconnectedness and some examples		
Tutorial 5	Assignment/ Discussion/Exercises		
Lecture 11	Theorems based on disconnected sets		
Lecture 12	Continuity and Connectedness based theorems		
Tutorial 6	Assignment/ Discussion/Exercises		
Lecture 13	Components in topological spaces		
Lecture 14	Introduction to Totally disconnected space		
Tutorial 7	Assignment/ Discussion/Exercises		
Lecture 15	Theorems based on Totally disconnected sets		
Lecture 16	Locally connected space and some theorems		
Tutorial 8	Assignment/ Discussion/Exercises		
Lecture 17	Introduction to compact spaces and examples		
Lecture 18	Theorems based on Compact sets		
Tutorial 9	Assignment/ Discussion/Exercises		
Lecture 19	Compactness and continuity		
Lecture 20	Some properties related to compactness		
Tutorial 10	Assignment/ Discussion/Exercises		
Lecture 21	One point compactification		
Lecture 22	Topic contd.		

Tutorial 11	Assignment/ Discussion/Exercises
Lecture 23	The cantor set and examples
Lecture 24	Topic contd.
Tutorial 12	Assignment/ Discussion/Exercises
Lecture 25	Finite products and examples
Lecture 26	Topic contd.
Tutorial 13	Assignment/ Discussion/Exercises
Lecture 27	Arbitrary products and examples
Lecture 28	Topic contd.
Tutorial 14	Assignment/ Discussion/Exercises
Lecture 29	Comparison of topologies
Lecture 30	Topic contd.
Tutorial 15	Assignment/ Discussion/Exercises
Lecture 31	Quotient spaces
Lecture 32	Topic contd.
Tutorial 16	Assignment/ Discussion/Exercises
Lecture 33	Separation axioms for T0 spaces
Lecture 34	Topic contd.
Tutorial 17	Assignment/ Discussion/Exercises
Lecture 35	Separation axioms for T0 spaces
Lecture 36	Topic contd.
Tutorial 18	Assignment/ Discussion/Exercises
Lecture 37	Separation axioms for T0 spaces
Lecture 38	Topic contd.
Tutorial 19	Assignment/ Discussion/Exercises
Lecture 39	Separation axioms for T0 spaces
Lecture 40	Topic contd.
Tutorial 20	Assignment/ Discussion/Exercises