TEACHING PLAN			
Course Title: W Applications	Vavelet Analysis and	Duration of Examination: 3 hours	
Course Code: M	IAMT419	Maximum Marks: 100	
Course Instructor: Prof. S. D. Sharma			
Unit I			
LECTURE I	Fourier transformations in L2 (R)		
LECTURE 2	A Sampling Theorem		
TUTORIAL 1	Exercises related to Lecture I and Lecture 2		
LECTURE 3	The Discrete and Fast Fourier transformations		
LECTURE 4	The DFT in Matrix form		
TUTORIAL 2	Examples and exercises related to Lecture 3 and Lecture 4		
LECTURE 5	Inversion Theorem for DFT, DFT map		
LECTURE 6	Fast Fourier Transform for N = 2k		
TUTORIAL 3	Examples and Exercises related to Lecture 5 and Lecture 6		
LECTURE 7	Buneman's Algorithm		
LECTURE 8	FFT for N = RC, FFT form		
TUTORIAL 4	Exercises related to Lecture 7 and Lecture 8		
Unit II			
LECTURE 9	Wavelets: Definition and examples		
LECTURE 10	Orthonormal basis from one function		
TUTORIAL 5	Exercises and examples related to Lecture 9 and Lecture 10		
LECTURE 11	Multiresolution analysis		
LECTURE 12	Orthonormal Direct Sums		
TUTORIAL 6	Exercises and examples related to Lecture 11 and Lecture 12		
LECTURE 13	Mother wavelets		
LECTURE 14	Theorems related to Lecture 13		
TUTORIAL 7	Exercise related to Lecture 13 and Lecture 14		
LECTURE 15	From MRA to Mother wavelets		
LECTURE 16	Theorems related to Lecture 15		
TUTORIAL 8	Exercises related to Lecture 15 and Lecture 16		
Unit III			
LECTURE 17	Construction of a scaling function	on with compact support	
LECTURE 18	Shannon wavelets		
TUTORIAL 9	Examples and exercises related to Lecture 17 and Lecture 18		
LECTURE 19	Riesz bases and MRAs		
LECTURE 20	Franklin wavelets		

TUTORIAL 10	Examples and exercises related to Lecture 19 and Lecture 20		
LECTURE 21	Frames		
LECTURE 22	Weyl-Heisenberg Frames Splines		
TUTORIAL 11	Examples and exercises related to Lecture 21 and Lecture 22		
LECTURE 23	The continuous wavelets transforms		
LECTURE 24	Continue lecture 23		
TUTORIAL 12	Examples and exercises related to Lecture 23 and Lecture 24		
Unit IV			
LECTURE 25	Wavelets constructions		
LECTURE 26	Biothogonal wavelets		
TUTORIAL 13	Examples and exercises related to Lecture 25 and Lecture 26		
LECTURE 27	Wavelets in several variables		
LECTURE 28	Theorems related to Lecture 19		
TUTORIAL 14	Examples and exercises related to Lecture 27 and Lecture 28		
LECTURE 29	Wavelets packets		
LECTURE 30	Multi-wavelets		
TUTORIAL 15	Examples and exercises related to Lecture 29 and Lecture 30		
LECTURE 31	Wavelets frames		
LECTURE 32	Theorems related to Lecture 23		
TUTORIAL 16	Examples and exercises related to Lecture 31 and Lecture 32		
Unit V			
LECTURE 33	Applications of wavelets		
LECTURE 34	Coninue Lecture 33		
TUTORIAL 17	Examples and exercises related to Lecture 33 and Lecture 34		
LECTURE 35	Applications in Statistics		
LECTURE 36	Continue Lecture 35		
TUTORIAL 18	Examples and exercises related to Lecture 35 and Lecture 36		
LECTURE 37	Netural networks		
LECTURE 38	Differential equations		
TUTORIAL 19	Examples and exercises related to Lecture 37 and Lecture 38		
LECTURE 39	Turbulence, Medicine		
LECTURE 40	Economics and Finance		
TUTORIAL 20Examples and exercises related to Lecture 39 and Lecture 40			
Total Lectures: 40Total Tutorials: 20Total = 60			
-			

Textbooks:

1. G. Bachman, Lawrence Narici and Edward Beckenstein, Fourier and Wavelet Analysis, Springer-Verlag, New-York, 2000 (for Units 1,2,3).

2. Khalid Ahmad and F. A. Shah, Introduction to wavelets and Applications, World Education Publisers, 2013 (for Units 4 and 5).

Reference books:

1. D. F. Walnut, An introduction to Wavelets Analysis, Birkhauser, 2002.

2. M. V. Wickerhauser, Adapted Wavelets Analysis from the Theory to Software, A. K. Peters Ltd., Wellesley, 1994.