TEACHING PLAN			
Course Title: Complex Dynamical Systems D		Duration of Examination: 3 hours	
Course Code: MAMT- 409		Maximum Marks: 100	
Course Inst	Course Instructor's Name: Dr. Kamlesh Kumar		
Lecture 1	Introduction to Mobius maps		
Lecture 2	Iteration of a Mobius transformations and some examples		
Tutorial 1	Assignment/ Discussion/Exercises		
Lecture 3	Fixed points and some examples		
Lecture 4	Types of fixed points as Attracting, repelling and indifferent		
Tutorial 2	Assignment/ Discussion/Exercises		
Lecture 5	Introduction to extended complex plane		
Lecture 6	Stereographic projection and representation of complex numbers on a sphere		
Tutorial 3	Assignment/ Discussion/Exercises		
Lecture 7	Chordal metric and Spherical metric		
Lecture 8	Theorems based on chordal and spherical metrics		
Tutorial 4	Assignment/ Discussion/Exercises		
Lecture 9	Introduction to Rational maps		
Lecture 10	Lipschitz's condition		
Tutorial 5	Assignment/ Discussion/Exercises		
Lecture 11	Conjugate classes of rational maps		
Lecture 12	Valence of function and some examples		
Tutorial 6	Assignment/ Discussion/Exercises		
Lecture 13	Critical points of rational maps		
Lecture 14	Conjugacy of rational map to a polynomial		
Tutorial 7	Assignment/ Discussion/Exercises		
Lecture 15	d-fold map of a rational function		
Lecture 16	Theorems based on number of fixed points for a rational map		
Tutorial 8	Assignment/ Discussion/Exercises		
Lecture 17	Introduction to Equicontinuous functions		
Lecture 18	Maximality in rational functions		
Tutorial 9	Assignment/ Discussion/Exercises		
Lecture 19	Normality and its properties		
Lecture 20	Definitions of Fatou and Julia sets		
Tutorial 10	Assignment/ Discussion/Exercises		
Lecture 21	Properties of Fatou and Julia sets		
Lecture 22	Theorems based on Fatou and Julia sets		

Tutorial 11	Assignment/ Discussion/Exercises	
Lecture 23	Invariant maps and some theorems	
Lecture 24	Completely invariants and its Properties	
Tutorial 12	Assignment/ Discussion/Exercises	
Lecture 25	Introduction to Exceptional points	
Lecture 26	Backward orbit and its properties	
Tutorial 13	Assignment/ Discussion/Exercises	
Lecture 27	Exceptional points of rational maps	
Lecture 28	Closure of Julia set and some theorems	
Tutorial 14	Assignment/ Discussion/Exercises	
Lecture 29	Derived sets of Julia set and some theorems	
Lecture 30	Uncountability in Julia sets	
Tutorial 15	Assignment/ Discussion/Exercises	
Lecture 31	Periodic points and its properties	
Lecture 32	Some theorems on periodic points	
Tutorial 16	Assignment/ Discussion/Exercises	
Lecture 33	Introduction to structure of Fatou set	
Lecture 34	Some introductory topics on topology	
Tutorial 17	Assignment/ Discussion/Exercises	
Lecture 35	Definitions on Connectedness and disconnectedness	
Lecture 36	Simply connected Fatou sets	
Tutorial 18	Assignment/ Discussion/Exercises	
Lecture 37	Components of Fatou sets of rational maps	
Lecture 38	Completely invariant components	
Tutorial 19	Assignment/ Discussion/Exercises	
Lecture 39	Components of Julia sets	
Lecture 40	Some theorems on components of Julia sets	
Tutorial 20	Assignment/ Discussion/Exercises	