DEPARTMENT OF MATHEMATICS CENTRAL UNIVERSITY OF JAMMU

TEACHING PLAN		
Course Title: Cryptography		Duration of Examination: 3 hours
Course Code: MAMT- 404		Maximum Marks: 100
Course Instructor : Dr. Deep Singh		
Lecture 1	Introduction to cryptography: private and public key cryptography	
Lecture 2	Classical cryptography, substitution ciphers	
Tutorial	Assignment/discussion/exercises	
Lecture 3	Divisibility and greatest common divisors in Z	
Lecture 4	The Euclidean algorithm and extended Euclidean algorithm	
Tutorial	Assignment/discussion/exercises	
Lecture 5	Modular arithmetic, prime numbers and unique factorization	
Lecture 6	Fundamental theorem of arithmetic	
Tutorial	Assignment/discussion/exercises	
Lecture 7	Fermat's little theorem, primitive root theorem	
Lecture 8	Symmetric ciphers, Encoding schemes, asymmetric ciphers	
Tutorial	Assignment/discussion/exercises	
Lecture 9	Origin of public key cryptography	
Lecture 10	topic contd.	
Tutorial	Assignment/discussion/exercises	
Lecture 11	Discrete logarithm problem	
Lecture 12	Deffie-Hellman key exchange	
Tutorial	Assignment/discussion/exercises	
Lecture 13	The El-Gamal public key crptosystem	
Lecture 14	topic contd.	
Tutorial	Assignment/discussion/exercises	
Lecture 15	A collision for discrete logarithm problem	
Lecture 16	The chinese remainder theorem	
Tutorial	Assignment/discussion/exercises	
Lecture 17	Integer factorization and the RSA crptosystem	
Lecture 18	Euler's formula, roots modulo pq	
Tutorial	Assignment/discussion/exercises	
Lecture 19	The RSA public key crptosystem and its implementation and security issues	
Lecture 20	Topic contd.	
Tutorial	Assignment/discussion/exercises	
Lecture 21	Primarily testing, Miler-Rabin test for composite numbers	
Lecture 22	The prime number theorem, Riemann-zeta function	
Tutorial	Assignment/discussion/exercises	
Lecture 23	Riemann hypothesis, AKS primality test	
Lecture 24	Pollard's p-1 factorization algorithm	
Tutorial	Assignment/discussion/exercises	
Lecture 25	Quadratic residues and quadratic reciprocity	
Lecture 26	Quadratic residue modulo p and its properties	
Tutorial	Assignment/discussion/exercises	
Lecture 27	Legendre symbol, quadratic reciprocity	

Lecture 28	Jacobi symbol, probabilistic encryption	
Tutorial	Assignment/discussion/exercises	
Lecture 29	The Goldwasser-Micali cryptosystem	
Lecture 30	Information theorey: perfect secrecy, entropy, redundancy	
Tutorial	Assignment/discussion/exercises	
Lecture 31	Entropy of natural language, algebra of secrecy systems	
Lecture 32	Complexity theory and P versus NP	
Tutorial	Assignment/discussion/exercises	
Lecture 33	Digital signatures: Definition and examples	
Lecture 34	Components of digital signature scheme	
Tutorial	Assignment/discussion/exercises	
Lecture 35	RSA digital signatures	
Lecture 36	topic contd.	
Tutorial	Assignment/discussion/exercises	
Lecture 37	ElGamal digital signatures	
Lecture 38	Digital signature algorithm (DSA)	
Tutorial	Assignment/discussion/exercises	
Lecture 39	GGH lattice-based digital signatures	
Lecture 40	NTRU digital signatures	
Tutorial	Assignment/discussion/exercises	