TEACHING PLAN		
Course Title: Applied Operator Theory		Duration of Examination: 3 hours
Course Code: MAMT- 402		Maximum Marks: 100
Course Instructor: Dr. Sanjay Kumar		
Unit I		
LECTURE I	Spectral Theory in Finite Dimensional Normed Spaces	
LECTURE 2	Eigenvalues, eigenvecotrs, eigenspaces, spectrum, resolvent set of a matrix	
TUTORIAL 1	Exercises related to Lecture I and Lecture 2	
LECTURE 3	Eigenvalues of an operator, Existence Theorem for eigenvalues	
LECTURE 4	Spectral theory for infinite dimensional normed linear spaces, resolvent of an operator	
TUTORIAL 2	Examples and exercises related to Lecture 3 and Lecture 4	
LECTURE 5	Spectrum of a bounded linear operator on a complex Banach space, Representation Theorem	
LECTURE 6	Resolvent equation, commutative properties of resolvent, Spectral Mapping Theorem for polynomials	
TUTORIAL 3	Examples and Exercises related to Lecture 5 and Lecture 6	
LECTURE 7	Local holomorphy, holomorphy of resolvent operators	
LECTURE 8	Spectral radius of bounded linear operators	
TUTORIAL 4	Exercises related to Lecture 7 and Lecture 8	
Unit II		
LECTURE 9	Definition of normed algebra and Banach algebra with examples	
LECTURE 10	Further properties of Banach algebra	
TUTORIAL 5	Exercises related to Lecture 9 and Lecture 10	
LECTURE 11	Invertible elements, Theorems related to invertible elements	
LECTURE 12	Banach-Alaoglu Theorem	
TUTORIAL 6	Exercises and examples related to Lecture 11 and Lecture 12	
LECTURE 13	Multiplicative linear functional and related theorems	
LECTURE 14	Spectrum, resolvent set, spectral radius, division algebra	
TUTORIAL 7	Exercise related to Lecture 13 and Lecture 14	
LECTURE 15	Gelfand-Mazur Theorem	
LECTURE 16	Sepctral Mapping Theorem	
TUTORIAL 8 Exercises related to Lecture 15 and Lecture 16		
Unit III		
LECTURE 17	Compact linear operator on normed spaces and examples	
LECTURE 18	Compactness criterion	
TUTORIAL 9	Examples and exercises related to Lecture 17 and Lecture 18	

LECTURE 19	Uniform limit of a sequence of compact operators		
LECTURE 20	Examples related to lecture 19		
TUTORIAL 10	Exercises related to Lecture 19 and Lecture 20		
LECTURE 21	Spectral properties of compact linear operators on normed spaces		
LECTURE 22	Compactness of product		
TUTORIAL 11	Examples and exercises related to Lecture 21 and Lecture 22		
LECTURE 23	Finite rank operators		
LECTURE 24	Eigenvalues and eigenspaces for compact operators		
TUTORIAL 12	Examples and exercises related to Lecture 23 and Lecture 24		
Unit IV			
LECTURE 25	Unbounded linear operators and examples		
LECTURE 26	Hellinger-Toeplitz Theorem		
TUTORIAL 13	Examples and exercises related to Lecture 25 and Lecture 26		
LECTURE 27	Densely defined operators		
LECTURE 28	Hilbert-Adjoint operators		
TUTORIAL 14	Examples and exercises related to Lecture 27 and Lecture 28		
LECTURE 29	Inverse of the Hilbert-adjoint operators		
LECTURE 30	Symmetrics linear operators		
TUTORIAL 15	Examples and exercises related to Lecture 29 and Lecture 30		
LECTURE 31	Closed linear operators, closable operator and closure		
LECTURE 32	Spectrum of self-adjoint linear operators		
TUTORIAL 16	Examples and exercises related to Lecture 31 and Lecture 32		
Unit V			
LECTURE 33	Multiplication operators and related theorems		
LECTURE 34	Differentiation operators and related theorems		
TUTORIAL 17	Examples and exercises related to Lecture 33 and Lecture 34		
LECTURE 35	Self-adjoint multiplication operator		
LECTURE 36	Theorems related to Lecture 35		
TUTORIAL 18	Examples and exercises related to Lecture 35 and Lecture 36		
LECTURE 37	Spectrum of multiplication operators		
LECTURE 38	States, Observables		
TUTORIAL 19	Examples and exercises related to Lecture 37 and Lecture 38		
LECTURE 39	Position and moment operators		
LECTURE 40	Heisen-berg Uncertainty Principle		
TUTORIAL 20 Examples and exercises related to Lecture 39 and Lecture 40			
Total Lectures: 40Total Tutorials: 20Total = 60			

Text book:

• Erwin Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons, USA, 1989.

Reference books:

- Ronald G. Douglas, Banach Algebra Techniques in Operator Theory, Springer-Verlag, New York, 1998.
- John B. Conway, A course in Operator Theory, AMS, 2000.
- Arch. W. Naylor and George R. Sell, Linear Operator Theory in Engineering and Sciences, Springer-Verlag, New York, 2000.