DEPARTMENT OF MATHEMATICS CENTRAL UNIVERSITY OF JAMMU

TEACHING PLAN		
Course Title:	Finite Fields &Coding theory	Duration of Examination: 3 hours
Course Code:	MAMT- 303	Maximum Marks: 100
Course Instructor : Dr. Deep Singh		
Lecture 1	Field extension: Field, prime field and their examples	
Lecture 2	Algebraic extension, simple extension of finite fields	
Tutorial	Assignment/discussion/exercises	
Lecture 3	Algebraic element and its Minimal polynomial	
Lecture 4	Finite extension, Transitivity of Finite extensions	
Tutorial	Assignment/discussion/exercises	
Lecture 5	Simple algebraic extension, splitting field	
Lecture 6	Characterization of finite Fields : Finite field and no. of elements in a finite field	
Tutorial	Assignment/discussion/exercises	
Lecture 7	Existence and uniqueness of finite fields	
Lecture 8	Subfield of a finite field and examples	
Tutorial	Assignment/discussion/exercises	
Lecture 9	Roots of an irreducible polynomials over finite fields: nature of roots	
Lecture 10	Relation between splitting fields of two irreducible polynomials of same degree	
Tutorial	Assignment/discussion/exercises	
Lecture 11	Automorphism of a finite field	
Lecture 12	Trace: Definition and its basic properties	
Tutorial	Assignment/discussion/exercises	
Lecture 13	Relation between trace and linear transformations, transitivity of trace	
Lecture 14	Norm: Definition and its basic properties, Transitivity of norm	
Tutorial	Assignment/discussion/exercises	
Lecture 15	Bases: Dual bases, normal basis	
Lecture 16	Artin lemma, normal basis theorem	
Tutorial	Assignment/discussion/exercises	
Lecture 17	Roots of unity and cyclotomic polynomials: Cyclotomic field, primitive <i>n</i> th root of unity	
Lecture 18		ic field as simple algebraic extension
Tutorial	Assignment/discussion/exercises	
Lecture 19	Finite fields as cyclotomic fields	
Lecture 20 Representation of elements of finite fields: Some different ways of wr		e fields: Some different ways of writing the
	elements of a finite field	
Tutorial	Assignment/discussion/exercises	
Lecture 21	Irreducible polynomials, Moebius function	
Lecture 22	Moebius inversion formula	
Tutorial	Assignment/discussion/exercises	
Lecture 23	Number of monic irreducible polynomials of a given degree over a finite field	

Lecture 24	Product of all monic irreducible polynomials of a given degree over a finite field	
Tutorial	Assignment/discussion/exercises	
Lecture 25	Linear codes: Definition of code and examples	
Lecture 26	Coding scheme and decoding scheme	
Tutorial	Assignment/discussion/exercises	
Lecture 27	Linear codes, Hamming distance, Hamming weight and examples	
Lecture 28	t-error-correcting codes	
Tutorial	Assignment/discussion/exercises	
Lecture 29	Decoding of linear codes	
Lecture 30	Hamming bound, Plotkin bound	
Tutorial	Assignment/discussion/exercises	
Lecture 31	Gilbert-Varshamov bound	
Lecture 32	Dual codes: Definition and examples	
Tutorial	Assignment/discussion/exercises	
Lecture 33	Cyclic codes: Definition and examples	
Lecture 34	Characterization of cyclic code in terms of an ideal	
Tutorial	Assignment/discussion/exercises	
Lecture 35	Generator polynomial of cyclic code	
Lecture 36	Parity-check polynomial of cyclic code	
Tutorial	Assignment/discussion/exercises	
Lecture 37	Relation between code polynomial and the roots of generator polynomial	
Lecture 38	BCH codes: Definition and examples	
Tutorial	Assignment/discussion/exercises	
Lecture 39	Minimum distance of BCH codes	
Lecture 40	Decoding algorithm for BCH codes	
Tutorial	Assignment/discussion/exercises	