TEACHING PLAN		
Course Title: Real Analysis		ration of Examination: 3 hours
Course Code: MAMT- 107		aximum Marks: 100
Course Instructor's Name: Mr. Kamlesh Kumar		
Lecture 1	Introduction to Euclidean space R ⁿ and its properties	
Lecture 2	Open ball and open sets in R ⁿ	
Tutorial 1	Assignment/ Discussion/Exercises	
Lecture 3	Structures of open sets in R	
Lecture 4	Adherent and accumulation points and its properties	
Tutorial 2	Assignment/ Discussion/Exercises	
Lecture 5	Derived set and Closure of a set and its properties	
Lecture 6	Bolzano's Weierstrass theorem, Cantor intersection theorem	
Tutorial 3	Assignment/ Discussion/Exercises	
Lecture 7	Lindeloff covering theorem, Heine-Borel theorem	
Lecture 8	Compactness and its properties	
Tutorial 4	Assignment/ Discussion/Exercises	
Lecture 9	Introduction to Reimann-Stieltjes Integral (RSI)	
Lecture 10	Conditions for the existence of RSI	
Tutorial 5	Assignment/ Discussion/Exercises	
Lecture 11	Properties of RSI, integration and differentiation	
Lecture 12	Fundamental theorems of calculus	
Tutorial 6	Assignment/ Discussion/Exercises	
Lecture 13	Integration of vector valued functions	
Lecture 14	Theorems based RSI for the vector valued functions	
Tutorial 7	Assignment/ Discussion/Exercises	
Lecture 15	RSI for the monotonic increasing/ decreasing functions	
Lecture 16	RSI for the continuous functions	
Tutorial 8	Assignment/ Discussion/Exercises	
Lecture 17	Introduction to sequence of real valued functions	
Lecture 18	Introduction to series of real valued functions	
Tutorial 9	Assignment/ Discussion/Exercises	
Lecture 19	Point wise and Uniform convergence for the sequence of the functions	
Lecture 20	Cauchy's criterion for the uniform convergence	
Tutorial 10	Assignment/ Discussion/Exercises	
Lecture 21	Weierstrass M-test for the uniform convergence of the series of the functions	
Lecture 22	Abel's and Dirichlet's tests for the uniform convergences of the sequence of real	

	valued functions	
Tutorial 11	Assignment/ Discussion/Exercises	
Lecture 23	Uniform convergence and Continuity	
Lecture 24	Theorems based on Uniform convergence and continuity	
Tutorial 12	Assignment/ Discussion/Exercises	
Lecture 25	Weirstrass approximation theorem	
Lecture 26	Uniform convergence of differentiable functions and its properties	
Tutorial 13	Assignment/ Discussion/Exercises	
Lecture 27	Introduction to Power series	
Lecture 28	Uniqueness theorem for Power series	
Tutorial 14	Assignment/ Discussion/Exercises	
Lecture 29	Radius of convergence of power series	
Lecture 30	Abel's and Tauber's theorem	
Tutorial 15	Assignment/ Discussion/Exercises	
Lecture 31	Functions of bounded variation and its properties	
Lecture 32	Variation function and its properties	
Tutorial 16	Assignment/ Discussion/Exercises	
Lecture 33	Function of several variables, linear transformation	
Lecture 34	Directional derivative functions, chain rule	
Tutorial 17	Assignment/ Discussion/Exercises	
Lecture 35	Partial derivatives and interchange of the order of the differentiation	
Lecture 36	Higher ordered derivatives and its properties	
Tutorial 18	Assignment/ Discussion/Exercises	
Lecture 37	Taylor's theorem, Inverse function theorem	
Lecture 38	Implicit function theorem, Jacobians and its properties	
Tutorial 19	Assignment/ Discussion/Exercises	
Lecture 39	Extremum problems with constraints	
Lecture 40	Lagrabges multiplier method for the extremum value of the function	
Tutorial 20	Assignment/ Discussion/Exercises	