DEPARTMENT OF MATHEMATICS CENTRAL UNIVERSITY OF JAMMU

TEACHING PLAN			
Course Title:	Numerical Analysis	Duration of Examination: 3 hours	
Course Code:		Maximum Marks: 100	
Course Instructor: Dr. Deep Singh			
Lecture 1	Errors and Numerical solutions of algebraic equations		
Lecture 2	Concept of approximate numbers		
Tutorial	Assignment/discussion/exercises		
Lecture 3	Significant digits, Scientific notation		
Lecture 4	Absolute and relative error		
Tutorial	Assignment/discussion/exercises		
Lecture 5	Normalized floating point numbers		
Lecture 6	Solution of algebraic equations using the method of iteration		
Tutorial	Assignment/discussion/exercises		
Lecture 7	Newton Raphson method and examples		
Lecture 8	Rate of convergence of iterative methods		
Tutorial	Assignment/discussion/exercises		
Lecture 9	System of linear algebraic equations and Gauss elimination method		
Lecture 10	Gauss-Seidel methods and examples		
Tutorial	Assignment/discussion/exercises		
Lecture 11	Matrix Inversion method and examples		
Lecture 12	Jordan's Method and examples		
Tutorial	Assignment/discussion/exercises		
Lecture 13	Norms of matrices and their examples		
Lecture 14	Condition number of matrices, ill conditioned systems and examples		
Tutorial	Assignment/discussion/exercises		
Lecture 15	Results/analysis of convergence of iterative methods		
Lecture 16	Constructing an algorithm based on Gauss elimination method		
Tutorial	Assignment/discussion/exercises		
Lecture 17	Finite differences: Forward, backward and divided difference operators		
Lecture 18	Results on Forward, backward and divided difference operators		
Tutorial	Assignment/discussion/exercises		
Lecture 19	Newton's interpolations and examples		
Lecture 20	Lagrange's interpolations and examples		
Tutorial	Assignment/discussion/exercises		
Lecture 21	Spline's interpolations and examples		
Lecture 22	Different types of approximations: Least square polynomial approximation		
Tutorial	Assignment/discussion/exercises		
Lecture 23	Polynomial approximation by use of orthogonal polynomial		
Lecture 24	Approximation with Chebyshev polynomial		
Tutorial	Assignment/discussion/exercises		

Lecture 25	Numerical integration and examples	
Lecture 26	topic continued	
Tutorial	Assignment/discussion/exercises	
Lecture 27	Newton's cotes of integration trapezoidal	
Lecture 28	Exercices on Newton's cotes of integration trapezoidal	
Tutorial	Assignment/discussion/exercises	
Lecture 29	Simpson's 1/3 rd and 3/8 rules	
Lecture 30	Exercises on Simpson's 1/3 rd and 3/8 rules	
Tutorial	Assignment/discussion/exercises	
Lecture 31	Gaussian quadrature formula	
Lecture 32	Exercises on Gaussian quadrature formula	
Tutorial	Assignment/discussion/exercises	
Lecture 33	Numerical solutions of ODE using Picard method	
Lecture 34	topic continued	
Tutorial	Assignment/discussion/exercises	
Lecture 35	Numerical solutions of ODE using Euler's method	
Lecture 36	topic continued.	
Tutorial	Assignment/discussion/exercises	
Lecture 37	Numerical solutions of ODE using Modified Euler's method	
Lecture 38	Numerical solutions of ODE using Runge-Kutte method	
Tutorial	Assignment/discussion/exercises	
Lecture 39	Second and fourth order multistep method-Milne method	
Lecture 40	topic continued	
Tutorial	Assignment/discussion/exercises	