M A/M Sc Applied Mathematics, 3rd-Semester, 2016 End-Semester Examination

Course title: Finite Fields & Coding Theory
Time allowed: 3 hours

Course code: PGAMT3C003T

Maximum Marks: 100

Instructions for the candidates:

- The question paper consist of three sections, namely, Section A, Section B and Section C.
- The section A consist of 10 objective type questions, and all the questions are compulsory in this section.
- The section B consist of 10 short answer type questions with 2 questions from each unit, and the candidate has to attempt 5 questions selecting one question from each unit.
- The section C consist of 5 long answer type questions, and the candidate has to attempt any 3 questions.

Section A

	(1)	Which of the following is a prime field?	
	(-)	(a) \mathbb{F}_{5^3} . (b) \mathbb{F}_{3^2} . (c) \mathbb{F}_3 . (d) None of the above.	1.5
	(2)	For any prime p the residue class ring $\mathbb{Z}/(p)$ can be identified with	
		(a) Galois field \mathbb{F}_p of order p . (c) Galois field \mathbb{F}_p of order $p-1$.	
		(b) may or may not be field. (d) None of the above.	1.5
	(3)	If p is a prime and n a positive integer, then	
		(a) n divides $\phi(p^n - 1)$. (c) n does not divides $\phi(p^n - 1)$. (b) $gcd(n, \phi(p^n - 1)) = 1$. (d) None of the above.	
		(b) $gcd(n, \phi(p^n - 1)) = 1$. (d) None of the above.	1.5
	(4)	Let $K = \mathbb{F}_q$ and $F = \mathbb{F}_{q^m}$. Then for the norm function $N_{F/K}$ which of the follows	ving
		statement is false	
		(a) $N_{F/K}(\alpha\beta) = N_{F/K}(\alpha) \cdot N_{F/K}(\beta)$, for every $\alpha, \beta \in F$.	
		(b) $N_{F/K}(a) = a^m$, for every $a \in K$.	
		(c) $N_{F/K}(a^m) = a$, for every $a \in K$.	
		(d) $N_{F/K}(\alpha^q) = N_{F/K}(\alpha)$, for every $\alpha \in F$.	1.5
	(5)	Let F be a finite field with q elements, for every $a \in F$	
		(a) $a^{q-1} = a$. (b) $a^q = a$. (c) $a^{q-1} = 1$. (d) $a^2 = a$	= a.
	(0)	1.5	
	(6)	Let $f(x) = x^2 + 1 \in \mathbb{F}_3[x]$. Then the companion matrix of f is given by	
		(a) $\begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$. (b) $\begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix}$. (c) $\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$. (d) $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$.	1.5
	(7)	If $x = (1110)$ and $y = 1010 \in \mathbb{F}_2^4$, then the Hamming weight of $z = x + y$ is	
		(a) 1. (b) 5. (c) 2. (d)7.	1.5
	(8)	For a linear (n, k) -code C , the syndrome $S(y)$ of y is a vector of length	
		(a) n . (b) k . (c) $n-k$. (d) None of the above.	1.5
	(9)	A BCH code of length n over \mathbb{F}_q is called a Reed-Solomon code if	
		(a) $n = q - 1$. (b) $n = q$. (c) $n = q + 1$. (d) None of the above.	1.5
-	(10)	A linear code C is cyclic if and only if C is an ideal of	
		(a) $F_q[x]/(x^n-1)$. (c) $(x^n-1)F_q[x]$.	1 =
		(a) $F_q[x]/(x^n-1)$. (b) $F_p[x]/(x^n-1)$, $q=p^n$, p a prime. (c) $(x^n-1)F_q[x]$. (d) None of the above.	1.5

Section - B

Unit - I

(1) If L is a finite extension of K and M is a finite extension of L, then show that M is a finite extension of K with

$$[M:K] = [M:L][L:K].$$

8

(2) Let F_q be the finite field with $q = p^n$ elements. Then every subfield of F_q has order p^m , where m is a positive divisor of n. Conversely, if m is a positive divisor of n, then there exist exactly one subfield of F_q with p^n elements.

Unit - II

- (3) Prove that the distinct automorphisms of \mathbb{F}_{q^m} over \mathbb{F}_q are exactly the mappings $\sigma_0, \sigma_1, \ldots, \sigma_{m-1}$, defined by $\sigma_i(\alpha) = \alpha^{q^i}$, for $\alpha \in \mathbb{F}_{q^m}$ and $0 \le i \le m-1$.
- (4) Let K be a finite field, F an extension of K of degree m over K, and $\alpha_1, \alpha_2, \ldots, \alpha_m \in F$. Then $\{\alpha_1, \alpha_2, \ldots, \alpha_m\}$ is a basis of F over K if and only if $\Delta_{F/K}(\alpha_1, \alpha_2, \ldots, \alpha_m) \neq 0$.

Unit - III

- (5) Let F be a finite extension of $K = \mathbb{F}_q$ and $\alpha = \beta^q \beta$ for some $\beta \in F$. Prove that $\alpha = \gamma^q \gamma$ with $\gamma \in F$ if and only if $\beta \gamma \in K$.
- (6) Let $f \in \mathbb{F}_q[x]$ be an irreducible polynomial over \mathbb{F}_q of degree m. Then f(x) divides $x^{q^n} x$ if and only if m divides n.

Unit - IV

- (7) If C is a binary (n, 1) repetition code, then prove that the dual code C^{\perp} is the (n, n-1) parity check code..
- (8) State and prove Gilbert-Varshamov Bound theorem.

8

Unit - V

- (9) Define cyclic code and show that the binary cyclic code of length $n = 2^m 1$ for which the generator polynomial is minimal polynomial over F_2 of a primitive element of F_{2^m} is equivalent to the binary (n, n m) Hamming code.
- (10) Prove that linear code C is cyclic if and only if C is an ideal of $\mathbb{F}_q[x]/(x^n-1)$. 8

Section C

- (11) State and prove existence and uniqueness theorem of finite fields.
- (12) Prove that for $\alpha \in \mathbb{F}_{q^m}$, $\{\alpha, \alpha^q, \alpha^{q^2}, ..., \alpha^{q^{m-1}}\}$ is a normal basis of \mathbb{F}_{q^m} over \mathbb{F}_q if and only if the polynomials $x^m 1$ and $\alpha x^{m-1} + \alpha^q x^{m-2} + ... + \alpha^{q^{m-2}} x + \alpha^{q^{m-1}}$ in $\mathbb{F}_{q^m}[x]$ are relatively prime.
- (13) Show that the product I(q, n; x) of all monic irreducible polynomials in $\mathbb{F}_q[x]$ of degree n > 1 satisfy

$$I(q, n; x) = \prod_{m} Q_m(x),$$

where the product is extended over all positive divisors m of $q^n - 1$ for which n is the multiplicative order of q modulo m, and where $Q_m(x)$ is the mth cyclotomic polynomial over \mathbb{F}_q .

(14) Construct a standard array for code defined by parity-check matrix

$$H = \left(\begin{array}{ccccc} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{array}\right).$$

Use it to decode the vector 110110.

15

(15) Define the BCH code and give the decoding algorithm for the BCH code.