M A/ M Sc Applied Mathematics, 3rd Semester Examination 2016 **End Semester Examination**

Course Title: Basic Linear Algebra I.D. Course Number: PGAM3IOO1T-Time Allowed: 3 hours Maximum Marks: 100

Instructions for the candidates:

- The question paper consist of three sections, namely, Section A, Section B and Section C.
- The section A consist of 10 objective type questions, and all the questions are compulsory in this section.
- The section B consist of 10 short answer type questions with 2 questions from each unit, and the candidate has to attempt 5 questions selecting one question from each unit.

• The section C consist of 5 long answer type questions, and the candidate has to attempt any 3 questions.			
		Section A	
1	A matrix A is said to be orthogona	l if	
		(c) $A^T = A^{-1}$. (d) None of the above.	1.5
2.	If $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$. Then which		1.0
	(a) $ A = a_{11}a_{22} - a_{12}a_{21}$.	(c) $ A = a_{11}a_{22} + a_{12}a_{21}$.	
	(b) $ A = a_{12}a_{21} - a_{11}a_{22}$.	(d)None of the above.	1.5
3.	Let A be a square matrix and A ha	s a row (or columns) of zeros. Then	
	(a) $ A = 0$.	(c) $ A \neq 0$.	
	(b) $ A $ may or may not be zero.	(d) None of the above.	1.5
 4. Consider the following two statements: (i) Every non zero element of a field F possess multiplicative inverse. (ii) There exists 1 ∈ F such that 1.a = a for all a ∈ F. Then 			
	(a) Only (i) is true.	(c) Only (ii) is true.	
	(b) Both (i) and (ii) are true.	(d) None of the above.	1.5
5.	The standard basis of $V_2(R)$ is		
	(a) $B = \{(1,0), (0,1)\}.$	(c) $B = \{(1,1), (0,1)\}.$	
	(b) $B = \{(1,2), (0,3)\}.$	(d) Both (a) and (b) are false.	1.5
6.	. The dimension m of a subspace of a vector space $V(F)$ of dimension n satisfy		
	(a) $m \le n$. (b) $m > n$. (c)	$\gcd(m,n)=1.$ (d) None of the above.	1.5
7.	The eigen values of the matrix $A = \begin{pmatrix} i & 0 \\ 2 & 6i \end{pmatrix}$ are		
	(a) $i, 6i$. (b) $5i, 9$.	(c) 3,7i. (d) None of the above.	1.5
8.	Let U and V be two vector spaces of T from U to V is	over the field F . Then for all $\alpha, \beta \in V$ and $a, b \in F$, a linear transfer	sformation

- (c) $T(a\alpha + b\beta) = \alpha T(a) + \beta T(b)$. (a) $T(a\alpha + b\beta) = aT(\alpha) + bT(\beta)$. (d) None of the above. 1.5 (b) $T(a\alpha + b\beta) = (a+b)T(\alpha) + (a+b)T(\beta)$. 9. The rank of the matrix $A = \begin{pmatrix} 1 & 2 \\ i & 2i \end{pmatrix}$ is
- (a) 1. 10. Which of the following is an orthonormal set

(b) 2.

(c) 3.

(c) $S = \{(1, 1, 1), (1, 1, 0), (0, 0, 1)\}.$ (a) $S = \{(1,0,0), (0,1,0), (0,0,1)\}.$ 1.5 (d) None of the above. (b) $S = \{(1, 2, 3), (0, 3, 4), (0, 0, 5)\}.$

(d) None of the above.

1.5

8

Section B

Unit - I

- Write a system of n-linear equations and hence define coefficient and augmented matrices.
- 2. Check whether the property $A^{\theta}A = A$ holds for the matrix $A = \begin{pmatrix} i & 1+i \\ 2 & -i \end{pmatrix}$.

Unit - II

3. For the following system of equations:

$$2x - 5y + 2z = 2,$$

 $x + 2y - 4z = 5,$
 $3x - 4y - 6z = 1.$

Compute the value of determinant of the coefficient matrix.

4. Find the value of the determinant of the following matrix

$$A = \left(\begin{array}{ccc} 1 & 2 & 3\\ 0 & 5 & -2\\ 1 & -3 & 4 \end{array}\right).$$

Unit - III

- 5. Determine the rank of the matrix $A = \begin{pmatrix} 1 & 3 & 5 \\ 2 & -1 & 1 \\ 3 & 2 & 5 \end{pmatrix}$ by reducing into Echelon form.
- 6. Let R be the field of real numbers. Show that the following is subspace of $V_3(R)$

$$W = \{(a, b, c) : a, b, c \in R\}.$$

Unit - IV

- 7. Consider the following linear operator T on R^2 defined by T(x,y)=(2x-7y,4x+3y) with respect to the standard basis $S=\{(1,0),(0,1)\}.$
 - (i) Find the matrix A of T relative to S.
 - (ii) Find determinant and trace of matrix A.

8

8. Prove that the function T(a,b)=(a+b,a-b,b) is a linear transformation on \mathbb{R}^2

8

Unit - V

- 9. Find the matrix of the linear operator on R^3 defined by $T(x_1, x_2, x_3) = (3x_1 + x_3, -2x_1 + x_2, -x_1 + 2x_2 + 4x_3)$ with respect to the standard basis of R^3 . Find the eigen values and eigen vectors of T by computing characteristic polynomial.
- 10. Consider the vectors u = (1, 2, 4), v = (2, -3, 5) and w = (4, 2, -3) in \mathbb{R}^3 . Find u.v. ||u||, ||v|| and (u + v).w. 8

Section - C

- 11. Define the following and produce atleast one example supporting to the claim.
 - (i) Symmetric matrix.
 - (ii) Upper triangular matrix.
 - (iii) Lower triangular matrix.

5+5+5

12. Check whether the property |AB| = |A||B| holds for the matrices

$$A = \begin{pmatrix} 2 & 6 & 1 \\ 4 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 5 & 1 & 2 \\ 3 & -2 & 1 \\ 1 & 2 & -1 \end{pmatrix}$$

Prove that an ordered n-tuples over the field F of real numbers forms a vector space.

15

15

- 14. Show that the function T(a, b) = (a + b, a b) is a linear transformation. Compute range, rank, null space and nullity of T.
- 15. Define Gram Schmidt orthogonalization process. Obtain an orthonormal basis of T with respect to the standard inner product in \mathbb{R}^3 generated by $S = \{(1,0,3),(2,1,1),(0,2,1)\}.$