MA/ M.Sc. Applied Mathematics, IV- Semester, 2014

End - Semester examination

Course Title: Wavelet Analysis and Applications

Time Allowed: 03 hrs

a) $\Delta g \, \Delta \hat{g} \, \geq \frac{1}{2}$

c) $\Delta g \, \Delta \hat{g} = \frac{1}{2}$

Course no.: MAMT 419

Maximum marks: 100

b) $\Delta g \Delta \hat{g} \leq \frac{1}{2}$

d) none of the above

Section(A)

Note:	Attempt al	I questions.	Each question	carries	one mark.
-------	------------	--------------	---------------	---------	-----------

Note: Attempt all questions. Each question ca	mes one mark.
1. For $f \in L_2(\mathbb{R})$, which of the following is equal	to $\widehat{f}(t)(\omega)$?
a) $\overline{\hat{f}(-\omega)}$	b) $\hat{f}(-\omega)$
c) $\overline{\hat{f}(\omega)}$	d) $\hat{f}(\omega)$
2. If $F: L_2(\mathbb{R}) \to L_2(\mathbb{R})$ is Fourier transform, then I	Fis
a) continuous	b) linear
c) bijection	d) all of the above
3. If $\{V_j \colon j \in \mathbb{Z}\}$ is MRA, then $\bigcap_{j \in \mathbb{Z}} V_j$ is equal to	
a) $L_2(\mathbb{R})$	b) {0}
c) Ø	d) $\hat{f}(\omega)$
4. The scaling function for the Haar system is ed	o.04: Show that A math of laup
a) 1 _{[0,1)}	b) 1 _(0,1)
c) 1 _[0,1]	d) 1 _{(0,1]}
5. If $f: \mathbb{R} \to \mathbb{C}$ and $A = \{ t \in \mathbb{R}: \ f(t) \neq 0 \}$, then su	pport of f is equal to
a) A	b) A ⁰
c) $ar{A}$ condenses wavelet $ar{A}$ (ii) Continuous wavelet $ar{A}$	d) none of the above
6. A frame is said to tight frame if the frame bou	nds A, B satisfy:
a) $A = B$	b) $A > B$
c) $A < B$	d) none of the above
7 If a C C(P) and a are windows then A a A a	

8. If φ is a scaling function having compact support and $\hat{\varphi}(0) \neq 0$, then

a) $m_{\varphi}(0) = 0$

b) $m_{\varphi}(0) = 1$

c) $m_{\varphi}(0) = -1$

d) none of the above

9. If $f \in L_1(\mathbb{R})$, then

a) $\hat{f} \in L_1(\mathbb{R})$

b) $\hat{f} \notin L_1(\mathbb{R})$

c) \hat{f} may or may not be in $L_1(\mathbb{R})$

d) none of the above

10 In medicines, wavelets have been used for the analysis of

a) ECG b) MRI c) EEG d) all of the above

Section(B)

Note: Attempt any five questions. Each question carries six marks.

Q.no.01: Find the discrete Fourier transform of $g = (1, i, i^2, i^3)$.

Q.no.02: Explain Buneman's algorithm.

Q.no.03: Define the terms: (i) Filter (ii) Multiresolution analysis

Q.no.04: Show that a mother wavelet produces an orthonormal basis for $L_2(\mathbb{R})$.

Q.no.05: If φ is a scaling function with compact support and $\hat{\varphi}$ (0) \neq 0, then show that its filter m_{φ} is a trigonometric polynomial which is continuous and 2π -periodic.

Q.no.06: Define the terms: (i) Short Fourier transform (ii) Continuous wavelet transform.

Q.no.07: Define discrete Fourier transform and show that it is a linear bijection.

Q.no.08: Write a note of applications of wavelets to medicine.

Section(C)

Note: Attempt any five questions, selecting one question from each unit. Each question carries twelve marks.

UNIT-01

Q.no.01: If $f \in L_2(\mathbb{R})$ is continuous and band limited; $\hat{f}(\omega) = 0$ for $|\omega| > k$ for some constant k, then show that

$$f(t) = \sum_{n \in \mathbb{Z}} f\left(\frac{n\pi}{k}\right) \frac{\sin(kt - n\pi)}{kt - n\pi}.$$

Q.no.02: Show that the functions ${\omega_j/\sqrt{N}: j=0,1,...,N-1}$ form an orthonormal basis for $L_1(Z_N)$.

UNIT-02

Q.no.03: If $f \in L_2(\mathbb{R})$, then show that $\{f(t-n) : n \in \mathbb{Z}\}$ is orthonormal if and only if

$$\sum_{n\in\mathbb{Z}} \left| \hat{f}(\omega + 2n\pi) \right|^2 = 1 \ a.e.$$

Q.no.04: State and prove mother wavelet theorem.

UNIT-03

Q.no.05: If φ is a scaling function having compact support and $\hat{\varphi}(0) \neq 0$ with

$$m_{\varphi}(\omega) = \sum_{k=-n}^{n} \frac{c_k}{\sqrt{2}} e^{-ik\omega} = 1$$
,

then show that

$$\prod_{j\in\mathbb{N}}m_{\varphi}\left(\frac{\omega}{2^{j}}\right)$$

Converges uniformly on bounded subsets of \mathbb{R} .

Q.no.06: Establish that the trigonometric polynomials are not sufficient to generate wavelets.

UNIT-04

Q.no.07: If S is the frame operator of a frame $\{x_n\}$, in a Hilbert space, with frame bounds A, B, then show that

- (i) S^{-1} exists, is positive and satisfies $B^{-1}I \leq S^{-1} \leq A^{-1}I$
- (ii) $\{S^{-1}(x_n)\}$ is a frame.

Q.no.08: Write a note on wavelet packets.

UNIT-05

Q.no.09: Discuss applications of wavelets to differential equations.

Q.no.10: Write a note on applications of wavelets to statistics.