M A/M Sc Applied Mathematics, 4th-Semester, 201

End-Semester Examination

Course number: MAMT 403 Course title: Galois Theory

Maximum Marks: 100 Time allowed: 3 hours

Instructions for the candidates:

- The question paper consist of three sections, namely, Section A, Section B and Section
- The section A consist of 10 objetive type questions, and all the questions are compulsory in this section.
- The section B consist of 8 short answer type questions and the candidate has to attempt any 5 questions.
- The section C consist of 10 long answer type questions with 2 questions from each unit, and the candidate has to attempt 5 questions selecting one question from each unit.

Section A

- 1. Which of the following statement is false?
 - (a) $\mathbb{Q}(\iota) \simeq \mathbb{Q}(-\iota)$.
 - (b) $\mathbb{Q}(\pi) \simeq \mathbb{Q}(x)$
 - (c) $\mathbb{Q}(\sqrt[5]{2}e^{\frac{2\pi i}{5}}) \simeq \mathbb{Q}(\sqrt[5]{2})$
 - (d) None of the above.

2. Which of the following statement is false?

- (a) $[\mathbb{Q}(e^{\frac{2\pi \iota}{5}}):\mathbb{Q}] = 4$
- (b) $[\mathbb{Q}(\sqrt[5]{6}) : \mathbb{Q}] = 5$
- (c) $\left[\mathbb{Q}(\sqrt[7]{2}):\mathbb{Q}\right] = 7$
- (d) None of the above.
- 3. Which of the following is a false statement?
- - (a) $\sqrt[5]{3}$ is a constructible number.
 - (b) ⁵√3 is algebraic over Q.
 - (c) $\sqrt{3}$ is a constructible number.
 - (d) Every constructible real number is algebraic over Q.
- 4. Which of the following statement is false?
 - (a) The polynomial $x^2 + x + 1 \in \mathbb{Q}[x]$ has multiple roots.
 - (b) The polynomial $x^5 + x^4 + x^3 + x^2 + x + 1 \in \mathbb{Q}[x]$ is an irreducible polynomial in $\mathbb{Q}[x]$.

		The polynomial $x^4 + x^3 + x^2 + x + 1 \in \mathbb{Q}[x]$ has no multiple root. The polynomial $x^3 - 6 \in \mathbb{Q}[x]$ is irreducible in $\mathbb{Q}[x]$.	
5.		ch of the following statement is true?	
	(b)	Every algebraic extension is a finite extension. The algebraic closure of finite fields \mathbb{F}_2 and \mathbb{F}_4 , having 2 and 4 elements respectively is same. The algebraic closure of a finite field is finite.	
	170	The finite field \mathbb{F}_p having p elements is algebraically closed.	
6.	Whi	ch of the following statement is false?	
	(b) (c)	$\mathbb{Q}(\sqrt{3})$ is a Galois extension over \mathbb{Q} . \mathbb{C} is a Galois extension over \mathbb{R} . \mathbb{R} is a Galois extension over \mathbb{Q} . \mathbb{R} is a Galois extension over \mathbb{R} .	L
7.		sider $f(x) = (x - u_1)(x - u_2)$, the quadratic polynomial, and $s_1 \& s_2$ are elementary metric polynomials in $u_1 \& u_2$. Then the discriminant D of $f(x)$ is	
	(b) (c)	$s_1^2 - 4s_2$. $s_1^2 - 2s_2$. $s_2^2 - 4s_1$. None of the above.	L
8.	Whi	ch of the following statement is false?	
	(b)	The regular pentagon is constructible The regular 11-gon is constructible. The regular 17-gon is constructible. None of the above.	L
9.		K be a splitting field of cubic polynomial $f(x) \in \mathbb{F}[x]$ such that $[K : \mathbb{F}] = 6$. Then the iber of intermediate fields L between \mathbb{F} and K such that L is a Galöis extension over	
	(a) (b) (c) (d)	1 4	1
10.	Whi	ich of the following is a false statement?	
	(b)	$\mathbb{Q}(\sqrt[5]{2}, e^{\frac{2\pi \iota}{5}})$ is a Galois extenstion over \mathbb{Q} . $\mathbb{Q}(\sqrt[5]{2}, e^{\frac{2\pi \iota}{5}})$ is a splitting field of some polynomial with rational coefficients. $[\mathbb{Q}(e^{\frac{2\pi \iota}{5}}):\mathbb{Q}]=4$, None of the above.	1

Section B

- 1. Let α is algebraic over a field \mathbb{F} . Then prove that the $[\mathbb{F}(\alpha) : \mathbb{F}]$ is the degree of the irreducible polynomial of α over \mathbb{F} .
- 2. Compute the degree of extension $\mathbb{Q}(\sqrt[4]{2}, \sqrt[4]{5})$ over \mathbb{Q} with all details.
- 3. Prove that the set of all constructible real numbers form a subfield of \mathbb{R} .
- 4. Let K be a finite field having q elements. Then the mutiplicative group K^{\times} of nonzero elements of K is a cyclic group of order q-1.
- 5. Compute the intermediate subfields of the biquadratic extension $K = \mathbb{Q}(\iota, \sqrt{2})$ over \mathbb{Q} . 6
- 6. Consider the biquadratic extension $\mathbb{Q}(\iota, \sqrt{3})$ over \mathbb{Q} . Compute the irreducible polynomial of $\alpha = \iota + \sqrt{3}$ over \mathbb{Q} .
- 7. Consider the extension field $K = \mathbb{Q}(\iota, \sqrt[3]{2})$ over \mathbb{Q} . Compute the primitive element of K over \mathbb{Q} .
- 8. Let p be an odd prime, and let L be a unique quadratic extension of \mathbb{Q} contained in the Cyclotomic field $\mathbb{Q}(e^{\frac{2\pi \iota}{p}})$. Then

$$L = \mathbb{Q}\left(\sqrt{(-1)^{\frac{p-1}{2}}p}\right).$$

6

Section - C

Unit - I

- 1. (a) Let \mathbb{F} be a field such that $ch(\mathbb{F}) \neq 2$. Then, prove that any extension K of \mathbb{F} of degree 2 can be obtained by adjoining a square root: $K = \mathbb{F}(\delta)$, where $\delta^2 = D$ is an element of \mathbb{F} .
 - (b) Let $\mathbb{F} \subset K \subset L$ be fields. If L is algebraic over K and K is algebraic over \mathbb{F} , then L is algebraic over \mathbb{F} .
- 2. Let $F \subset L \subset K$ be fields. Then [K:F] = [K:L][L:F]. Deduce that if K is a field extension of F of prime degree p and $\alpha \in K \setminus F$, then α has degree p over F and $K = F(\alpha)$. 6+6

Unit - II

- 3. (a) Let p be a prime. If the regular p gon can be constructed by ruler and compass, then $p = 2^m + 1$ for some integer m.
 - (b) Define an algebraic closure of a field. Construct the algebraic closure of a finite field \mathbb{F}_q , where $q = p^r$ and p a prime number.
- 4. (a) Prove that $\theta = 20^{\circ}$ is not constructible by ruler and compass.

(b) Prove that regular 7 - gon is not constructible.

6

Unit - III

- 5. (a) Compute $G(\mathbb{Q}(\sqrt{2},\iota)/\mathbb{Q})$, the Galois group of biquadratic extension $\mathbb{Q}(\sqrt{2},\iota)$ over \mathbb{Q} .
 - (b) Let K/F be Galois extension, with Galois group G = G(K/F). Prove that the fixed field of G is F.
- 6. Discuss the Galöis theory of an irreducible cubic polynomial $x^3 + px + q \in \mathbb{F}[x]$ with all details.

Unit - IV

- 7. (a) Prove that every symmetric rational function is a rational function in elementary symmetric functions s_1, s_2, \ldots, s_n .
 - (b) Prove that the discriminant of an irreducible cubic polynomial $f(x) \in \mathbb{F}[x]$ is a square in \mathbb{F} if and only if the degree of its splitting field is 3.
- 8. Let G be a group of automorphisms of a field K of order n and $F = K^G$ be its fixed field. Then [K : F] = n.

Unit - V

- 9. Let K/F be a Galois extension, and L be an intermediate field. Let H = G(K/L) be the corresponding subgroup of G = G(K/F).
 - (a) Let $\sigma \in G$. Then the subgroup of G which corresponds to the conjugate subfield σL is the conjugate subgroup $\sigma H \sigma^{-1}$, i.e., $G(K/\sigma L) = \sigma H \sigma^{-1}$.
 - (b) L is a Galois extension of F if and only if H is a normal subgroup of G.
- 10. Let p be a prime number, and let $\zeta = e^{\frac{2\pi \nu}{p}}$. Then, prove that
 - (a) The Galois group of $\mathbb{Q}(\zeta)$ over \mathbb{Q} is a cyclic group of order p-1.
 - (b) For any subfield \mathbb{F} of \mathbb{C} , the Galois group of $\mathbb{F}(\zeta)$ over \mathbb{F} is a cyclic group.

12