M A/M Sc Applied Mathematics, 2nd-Semester, 2016 End-Semester Examination

Course title: Intoduction to Measure Theory Time allowed: 2 hours Instructions for the candidates:

Course number: PGAMT2F006T Maximum Marks: 50

- The question paper consist of three sections, namely, Section A, Section B and Section C.
- The section A consist of 8 objective type questions, and all the questions are compulsory in this section.
- The section B consist of 6 short answer type questions, and the candidate has to attempt any 3 questions selecting one question from each unit.
- The section C consist of 3 long answer type questions, and the candidate has to attempt any 2 questions.

Section A

- 1. The set of irrational number is
 - (a) a F_{σ} set (b) not a F_{σ} set (c) may or may not be a F_{σ} set (d) none of the these

1.5

- 2. Let μ^* be a metric outer measure on a metric spaces (X,d). Which of the following is false?
 - (a) every closed set is measurable (b) every open set is measurable (c) every Borel set is measurable (d) none of the these
- 3. Which of the following is false?
 - (a) the Cantor ternary set is open (b) the Cantor ternary set is a zero measurable set (c) the Cantor ternary set is uncountable (d) none of the these 1.5
- 4. Which of the following is true?
 - (a) $\chi_{A\cap B} = \chi_A \cdot \chi_B$ (b) $\chi_{A\cup B} = \chi_A + \chi_B$ (c) $\chi_{A\cup B} = \chi_A + \chi_B \chi_{A\cap B}$ (d) $\chi_{A\cap B} = \chi_A \cdot \chi_{B^c}$

1.5

- 5. Let μ^* be the metric outer measure on (X,d) and $A,B\subset X$ such that $\rho(A,B)>0$, which of the following is
 - (a) $\mu^{\star}(A \cup B) < \mu^{\star}(A) + \mu^{\star}(B)$ (b) $\mu^{\star}(A \cup B) = \mu^{\star}(A) + \mu^{\star}(B)$ (c) $\mu^{\star}(A \cup B) > \mu^{\star}(A) + \mu^{\star}(B)$ (d) none of
- 6. Let μ^* be a regular outer measure on a set X and let $(A_n : n \in \mathbb{N})$ be an increasing sequence of subsets of X. which of the following is true?
 - (a) $\lim_n \mu^{\star}(A_n) \leq \mu^{\star}(\lim_n A_n)$ (b) $\lim_n \mu^{\star}(A_n) \geq \mu^{\star}(\lim_n A_n)$ (c) $\lim_n \mu^{\star}(A_n) = \mu^{\star}(\lim_n A_n)$ (d) none of the these
- 7. Which of the following is false?
 - (a) Lebesgue measure is translation invariant (b) Lebesgue measure is complete (c) Lebesgue measure of an interval is its length (d) none of the these
- 8. Which of the following is true?
 - (a) [a.e.] \Rightarrow [measure] (b) [a.e.] \Rightarrow [mean] (c) [a.e.uniform] \Rightarrow [measure] (d) [mean] \Rightarrow [uniform]

1.5

Section B Unit I

9. Let X be a non-empty set such that #X > 1. Let

$$\mu^{\star}(E) = \left\{ \begin{array}{ll} 0 & \text{if} \quad E = \varphi \\ 1 & \text{if} \quad E \neq \varphi. \end{array} \right.$$

Then show that μ^* is an outer measure, and determine the class of measurable sets.

Define F_{σ} —Set and G_{δ} —Set. Prove that if (X, d) is a metric space and d is the topology generated by d, then

Unit II

- 10. Define measure space and extension of a measure. Prove that Lebesgue measure is complete. Does there exit a subset of $\mathbb R$ which is not Lebesgue measurable? justify your answer.
- 11. Define Borel measurable function. Prove that every measurable function is Lebesgue measurable but converse is true.

Unit III

- 12. Define integration of a positive measurable function. Prove that if s is a positive simple measurable function on (X, \mathcal{M}, μ) and $\lambda : \mathcal{M} \to [0, \infty]$ defined by $\lambda(E) = \int_E sd\mu$, $E \in \mathcal{M}$, then λ is a measure on \mathcal{M} .
- 13. Prove that if f and g are non-negative measurable functions on a measure space (X, \mathcal{M}, μ) , then $\int_A (f+g)d\mu = \int_A (f+g)d\mu$ $\int_A f d\mu + \int_A g d\mu$ for $A \in \mathcal{M}$.

Section - C

- 14. Define uncountable set. Prove the following:
 - i) if \mathcal{A} is a σ -algebra of sets in X, then $\mathcal{A}_{\sigma} = \mathcal{A}_{\delta} = \mathcal{A}$;
 - ii) if \mathcal{A} is an algebra of sets in X, then \mathcal{A}_{σ} need not be a σ -algebra;
 - iii) if \mathcal{A} is an algebra, then for any sequence $\{A_n\}_{n=1}^{\infty}$ in \mathcal{A} , we have $\lim_n \sup A_n \in \mathcal{A}$ and $\lim_n \inf A_n \in \mathcal{A}$ for $A \in \mathcal{A}$.

13

13

- 15. Let m^* be the Lebesgue outer measure on \mathbb{R} . Prove the following:
 - i) for every $E \in P(\mathbb{R})$ and $\epsilon > 0$, there exits an open set $E \subset O$ and $m^*(E) \leq m^*(O) \leq m^*(E) + \epsilon$;
 - ii) for every $E \in P(\mathbb{R})$, there exits a G_{δ} -set G in \mathbb{R} such that $G \supset E$ and $m^{\star}(G) = m^{\star}(E)$;
 - iii) the Lebesgue outer measure is a Borel regular outer measure.
- 16. If (X, \mathcal{M}, μ) be a measure space and f, g are measurable functions on X, then prove the following:

 - i) if $0 \le f \le g$, then $\int_A f d\mu \le \int_A g d\mu$ for every $A \in \mathcal{M}$; ii) if $f \ge 0$, and c is a constant, $0 \le c < \infty$, then $\int_A (cf) d\mu \le c \int_A f d\mu$

 - iii) if $A \subset B$, and $f \geq 0$, then $\int_A f d\mu \leq \int_B f d\mu$; iv) if f(x) = 0, for all $x \in A$, then $\int_A f d\mu = 0$, even if $\mu(A) = \infty$;
 - v) if $\mu(A) = 0$, then $\int_A f d\mu = \int_X (\chi_A f) d\mu$.