SET-I

M A/ M Sc Applied Mathematics, Central University of Jammu Semester-II, End Semester Examination 2016

Course number: PGAMT2C003T Course Title: Complex Analysis Maximum Marks: 100 Time Allowed: 3 hours

Instructions for the candidates:

- The question paper consist of three sections, namely, Section A, Section B and Section C.
- The section A consist of 10 objective type questions, and all the questions are compulsory in this section.
- The section B consist of 10 short answer type questions with 2 questions from each unit, and the candidate has to attempt 5 questions selecting one question from each unit.
- The section C consist of 5 long answer type questions, and the candidate has to attempt any 3 questions.

1.5

1.5

1.5

Section A

- (1) Which of the following statement is correct statement?
 - (a) $|z_1 z_2| = |z_1||z_2|$.
 - (b) $|z_1 z_2| \le |z_1| |z_2|$.
 - (c) $|z_1 z_2| \ge |z_1| |z_2|$.
 - (d) None of the above.
- (2) Consider the function $f(z) = \bar{z}$. Then
- (a) f(z) is non-analytic anywhere.
 - (b) f(z) is analytic everywhere.
 - (c) f(z) is analytic at z = 1 only.
 - (d) None of the above.
- (3) Let f(z) be an analytic function in a simple connected region R. If a and z are two points in R and $F(z) = \int_a^z f(z)dz$, then
 - (a) F(z) is analytic in R and F'(z) = f(z).
 - (b) F(z) may not be analytic in R and F'(z) = f(z).
 - (c) F(z) is analytic in R and $F'(z) \neq f(z)$.
 - (d) None of the above.
- (4) Consider the following two statements:
 - (i) If f(z) is analytic in a region R and on its boundary C. Then $\int_C f(z)dz = 0$
 - (ii) If f(z) is continuous in a simply connected region R and $\oint_C f(z)dz = 0$ then f(z) is analytic in R, then
 - (a) Both (i) and (ii) are correct.
 - (b) Only (i) is correct.
 - (c) Only (ii) is correct.
 - (d) None of the above.
- (5) If f(z) is analytic within and on the boundary C of a simply connected region R, then
 - (a) $f'(a) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z-a} dz$.
 - (b) $f'(a) = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-a)^2} dz$.

(c) $f^n(a) = \frac{n!}{2\pi} \int_C \frac{f(z)}{(z-a)^{n+1}} dz$.	
(d) None of the above.	1.5
 (6) The winding number of z - 1 = 1 with respect to z = 3 is (a) 0. 	
(b) 1.	
(c) 2. (d) None of the above.	1.5
(7) The residue of $f(z) = \frac{z^3}{z^2 - 1}$ at $z = 1$ is	
(a) 1	
(b) $\frac{1}{2}$. (c) $\frac{1}{3}$. (d) $\frac{1}{4}$.	
(c) $\frac{1}{3}$.	1.5
(d) $\frac{1}{4}$. (8) The radius of convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n!} (z-1-i)^n$ is	
(8) The radius of convergence of $\sum_{n=1}^{\infty} \frac{(z-1-t)^n}{n!}$ (a) 0.	
(a) 0. (b) ∞.	
(c) 1	1.5
(d) n .	1.0
(9) Consider the following two statements (i) The function $f(z) = e^z$ is conformal at every point in \mathbb{C} .	
(ii) $g(z) = z^2$ is conformal at $z = 0$, then	
(a) Both (i) and (ii) are true.	
(b) Only (i) is true. (c) Only (ii) is true.	
(d) None of the above.	1.5
(10) Consider the function $f(z) = z^3 - 3z + 1$, then	
(a) $f(z)$ is conformal at $z = \pm 1$. (b) $f(z)$ is not conformal at $z = \pm 1$.	
(c) $f(z)$ is not conformal at $z = 0$.	1.0
(d) None of the above.	1.5
Section B	
Unit - I	
(1) Define analytic functions and prove that $f(z) = e^{-\frac{1}{z^2}}$ has essential singular	rity at
(1) Define analytic functions and prove that $f(z)$	
z = 0. (2) Describe the stereographic projection with all necessary details. Unit - II	8
Cilie	8
(3) State and prove fundamental theorem of algebra. (3) Prove that $\int_{a}^{b} \int (z)dz$ is	
 (3) State and prove fundamental theorem of algebra. (4) If f(z) is analytic in a simply connected region R. Prove that ∫_a^b f(z)dz is pendent of the path in R joining any two points a and b in R. 	8
pendent of the path in A joining day	
	8
(5) State and prove Morera's theorem.	8
(6) State and prove Liouville's theorem. Unit - IV	12
(7) Find the region of convergence of the series $\sum_{n=1}^{\infty} \frac{(z+2)^{n-1}}{(n+1)^3 \cdot 4^n}$.	8
(7) Find the region of convergence of the $2n-1$ ($n+1$)	

(8) State and prove Jordan's lemma.	8
(8) State and Provide Unit - V	1 2
Unit - V (9) Find a suitable bilinear transformation which maps $z = 0, 1, -i$ into $w = 1, -i$	8
(9) Find a suitable officer	8
respectively. (10) State and prove Schwartz's lemma.	
Section - C	1.7
(11) Obtain an expression for Cauchy-Riemann equations in polar form. (11) Obtain an expression for Cauchy-Riemann equations in polar form.	15 15
(11) Obtain an expression for Cauchy-Riemann equation.	15
(11) Obtain an expression for Cauchy-Riemann equations of the control of the cont	10
(13) State and prove Cauchy	
(14) Prove that $\int_{-\infty}^{\infty} x^3 \frac{\pi}{1-x^2} \frac{\pi}{\sqrt{2}} \cos \frac{\pi a}{\sqrt{2}} dx$	
(14) Prove that $\int_0^\infty \frac{x^3}{x^4 + a^4} \sin mx dx = \frac{\pi}{2} e^{\frac{-ma}{\sqrt{2}}} \cos \frac{ma}{\sqrt{2}}.$	15
	e and
(15) Prove that the mapping $w = \frac{1}{z}$ transforms circle and straight lines into circle	15
straight lines.	