SET-I ## M A/ M Sc Applied Mathematics, Central University of Jammu Semester-II, End Semester Examination 2016 Course Title: Topology Time Allowed: 3 hours Course number: PGAMT2C001T Maximum Marks: 100 ## Instructions for the candidates: - The question paper consist of three sections, namely, Section A, Section B and Section C. - The section A consist of 10 objective type questions, and all the questions are compulsory in this section. - The section B consist of 10 short answer type questions with 2 questions from each unit, and the candidate has to attempt 5 questions selecting one question from each unit. - The section C consist of 5 long answer type questions, and the candidate has to attempt any 3 questions. | Section A | | |--|--------| | (1) Let $X = \{a, b, c\}$, then which of the following set is not a base for any top | ology | | whatsoever on X | | | (a) $\{\{a\}, \{b, c\}\}$. | | | (b) $\{\{a,b\},\{b,c\}\}.$ | | | (c) $\{\{a\}, \{b, \}\{c\}\}$. | 1.5 | | (d) $\{\{a,b,c\}\}$. | | | (d) $\{\{a,b,c\}\}$.
(2) Limit point of a subset $\{1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\}$ of R is | | | (a) 1. | | | (b) ∞. | 1.5 | | (c) 0 | n R is | | (c) 0
(d) None of the above.
(3) The closure of the set $A = \{2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5},\}$ with respect to usual topology of | | | | | | (a) $\bar{A} = \{1, 2, 3, \frac{4}{2}, \dots\}$
(b) $\bar{A} = \{1, 2, \frac{3}{2}, \frac{4}{2}, \dots\}$ | | | (b) $\vec{A} = \{1, -7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,$ | 1.5 | | (d) $\bar{A} = \phi$. (a) $\bar{A} = \phi$. (b) $\bar{A} = \phi$. (c) $\bar{A} = \phi$. (d) $\bar{A} = \phi$. | | | (d) $\overline{A} = \phi$. (4) Boundary of a set of integers \mathbb{Z} is | | | (a) N. | | | (b) ℝ. | 1.5 | | (c) \mathbb{Q} . | | | (d) \mathbb{R}^+ .
(5) Let (X, τ) be a topological space, then $(5) \text{ Let } (X, \tau) = \phi.$ | | | (5) Let (X, Y) be ϕ . (a) $ext(X) = \phi$. | | | $(1) \operatorname{ovt}(\lambda) = \lambda^{-1}$ | | | (c) $ext(X) \neq X$. | 1.5 | | (4) None of the statements | | | Cansider the lone and subset of K | | | (i) The cantor set is countable. Then | | | (::) The cantor set is | | (ii) The cantor set is countable. Then | (a) Both (i) and (ii) are true. (a) Both (i) and (ii) are false. | | | | |--|--|--------|--| | (a) Both (i) and (ii) are true. (b) Both (i) and (ii) are false. (b) Conty (i) is true. | | | | | (b) Double is true. | 1. | 5, | | | / I THE VALUE OF THE | 1. | J | | | (d) Only (ii) is true. (d) Only (ii) is true. (7) Consider the following statements (7) Consider the product of a finite number of 1 | · - Housdorff space | | | | CI-nelicel 1 C C | Housdorff spaces is not Housdorff space ient space of X is not connected. Then | | | | If X is connected then every quoti | Housdorn spaces is not connected. Then ient space of X is not connected. | | | | () Doth (I) and (II) are true | | | | | n) Roth (1) and (11) are talse | | | | | (c) Only (i) is true. | | 1.5 | | | (d) Only (ii) is true. | | | | | (8) Consider the following statements (i) The product of T_i -spaces is not a | T. space | | | | (i) Every T_2 space is not T_1 . Then | I i Sp | | | | (a) Both (i) and (ii) are true. | | | | | (b) Both (i) and (ii) are false. | | | | | (c) Only (i) is true. | | 1.5 | | | (d) Only (ii) is true. | | | | | (a) Consider the following two statements | | | | | (1) E-convergence Lindelot space IS II | of norman. | | | | (ii) Every completely normal space | is not norman | | | | (a) Both (i) and (ii) are true. | | | | | (b) Both (i) and (ii) are false. | | 1.5 | | | (c) Only (i) is true. | | 1.0 | | | (d) Only (ii) is true. (10) Consider the following two statements thousand the following two statements are st | S | | | | (10) Consider the following two statements (i) Every compact Housdorff space (ii) Every compact Housdorff space | is not normal. | | | | (::) Every metric space is her | iai. Then | | | | () Doth (i) and (ii) are true | | | | | (b) Both (i) and (ii) are raise | | | | | (c) Only (i) is true. | | 1.5 | | | (d) Only (ii) is true. | | | | | | | | | | Se | ection B | | | | | Unit - I | | | | (1) Define a topology on a non-empty set | A (say) If $ A = 3$ then determine/cons | struct | | | (1) Define a topology on a non-empty set | (71 (Say): 11 71 — 0, then determine) | 8 | | | all the topologies on set A. (2) Show that a set A is closed if and o | only if A contains all of its points. | 8 | | | (2) Show that a set A is closed if the | Unit - II | | | | lary on a finite se | t is compact. | 8 | | | (3) Show that a topology on a finite se
(4) Show that the closure of a connecte | ed set is connected. | 8 | | | (4) Show that the closure of a comme | Unit - III | | | | | | . 0 | | | (5) Show that the continuous image of a compact topological space is compact. (6) Describe the cantor set with all necessary detail. Show that \(\frac{1}{36}\) is a member of the | | | | | (6) Describe the cantor set with an income | $\frac{1}{36}$ is a member | or the | | | cantor set. | Unit IV | 8 | | | | Unit - IV | | | | (7) Let f: Y → X be a function from a space Y into a product space X = ∏ⁿ_{i=1}. Then prove that f is continuous if and only if the composition p_if of f with early projection map is continuous. (8) State and prove Tychonoff theorem. | ach
8 | |--|---------------| | Unit - V (9) Prove that a T₁-space X is regular if and only if each point a in X and each open in U. (10) Prove that every regular Lindelöf space is normal. | 8 pen ned 8 8 | | Section - C | | | (11) Show that Ā = A ∪ D(A), where A is any subset of topological space (X, τ) (12) Show that a topological space (X, τ) is disconnected if and only if ∃ a continuous function from X onto two points discrete space. (13) Let (X, τ) be any topological space, (Y, τ/Y) be a subspace of (X, τ) and A ⊆ then A is compact relative to X if and only if A is compact relative to Y. (14) Prove that the product of a finite number of compact spaces is compact. (15) State and prove Tietze extension theorem. | 15 |