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(a) only (i) is true.

(C) Both (]) and (MJ are true,
(b) only (ii) is true.

(d) Both (i) and (ii) are false.
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Section B
1. Show that a function which is uniformly continuous on an interval is continuous on that interval. 6
: e |
2. Show that lim xsin — =0 §
x—0 €T 4
3. State and prove Darboux’s theorem. 6
4. Prove that a function which is differentiable at a point is necessarily continuous at that point. 6
5. Give the definition of bounded sequence with at least one example . G
6. Prove that every convergent sequence is bounded. 6
7 Qive the definition and at least one example of limit points of a sequence. (5
8. By using logarithmic test, test the convergence of the series
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Section - C
Unit - T
9. Define supremum and infimum for a sot. Determine supremum and infimum of the set {4 + L :n € N}, 12
o , 5
10. Give all the details of field structure of real numbers. 12
Unit - I
11. If lim a, = ¢, then prove that
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12. State and prove the necessary and sufficient condition for the convergence of a sequence. 12
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