M A/M Sc Applied Mathematics, 4th-Semester, 2015-16 End-Semester Examination

Course title: Galois Theory

Course number: MAMT 403

Time allowed: 3 hours

Maximum Marks: 100

Instructions for the candidates:

- · The question paper consist of three sections, namely, Section A, Section B and Section
- The section A consist of 10 objective type questions, and all the questions are compulsory
- The section B consist of 8 short answer type questions and the candidate has to attempt
- The section C consist of 10 long answer type questions with 2 questions from each unit, and the candidate has to attempt 5 questions selecting one question from each unit.

Section A

- 1. Which of the following statement is false?
- (a) $\mathbb{Q}(\iota) \simeq \mathbb{Q}(-\iota)$.
 - (b) $\mathbb{Q}(\pi) \simeq \mathbb{Q}(x)$
- (c) $\mathbb{Q}(\sqrt[3]{3}e^{\frac{2\pi i}{3}}) \simeq \mathbb{Q}(\sqrt[3]{3})$
- (d) None of the above.
- Which of the following statement is false?
- (a) $[\mathbb{Q}(e^{\frac{2\pi i}{7}}) : \mathbb{Q}] = 6$ (b) $[\mathbb{Q}(\sqrt[5]{6}) : \mathbb{Q}] = 5$
- (c) $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 7$
- (d) None of the above.
- 3. Which of the following is a false statement?
- (a) ³√2 is a constructible number.
- (c) $\sqrt{2}$ is a constructible number.
- (d) Every constructible real number is algebraic over Q.
- Which of the following statement is false?
- (a) The polynomial $x^2 + x + 1 \in \mathbb{Q}[x]$ has multiple roots.
- (b) The polynomial $x^5 + x^4 + x^3 + x^2 + x + 1 \in \mathbb{Q}[x]$ is an irreducible polynomial in $\mathbb{Q}[x]$.

		-
	 (c) The polynomial x⁴ + x³ + x² + x + 1 ∈ Q[x] has no multiple root. (d) The polynomial x³ - 6 ∈ Q[x] is irreducible in Q[x]. 	
	Which of the following statement is true?	
	 (a) Every algebraic extension is a finite extension. (b) The algebraic closure of finite fields F₂ and F₄, having 2 and 4 elements respectively, is same. 	
	(c) The algebraic closure of a finite field is finite.	
	(d) The finite field \mathbb{F}_q having q elements is algebraically closed.	
i.	. Which of the following statement is false?	
	(a) $\mathbb{Q}(\sqrt{5})$ is a Galois extension over \mathbb{Q} .	
	(b) \mathbb{C} is a Galois extension over \mathbb{R} .	
	(c) \mathbb{R} is a Galois extension over \mathbb{Q} .	
	(d) ℝ is a Galois extension over ℝ.	
7.	Consider $f(x) = (x - u_1)(x - u_2)$, the quadratic polynomial, and $s_1 \& s_2$ are elementary symmetric polynomials in $u_1 \& u_2$. Then the discriminant D of $f(x)$ is	
	(a) $s_1^2 - 4s_2$. (b) $s_1^2 - 2s_2$.	
	(c) $s_2^2 - 4s_1$.	
	(d) None of the above.	
8	8. Which of the following statement is false?	
	(a) The regular pentagon is constructible	
	(b) The regular 11-gon is constructible.(c) The regular 17-gon is constructible.	
	(c) The regular 17-gon is constructed (d) None of the above.	
ç	 Let K be a splitting field of cubic polynomial f(x) ∈ F[x] such that [K : F] = 6. Then the number of intermediate fields L between F and K such that L is a Galöis extension over F is 	ě
	(a) 2	-
	(b) 1	
	(c) 4	
19.0	(d) 3 10. Which of the following is a false statement?	
1	() Q(5/6 2πι) : - Calain and ()	
	(a) $\mathbb{Q}(\sqrt[3]{2}, e^{\frac{2\pi i}{5}})$ is a Galois extension over \mathbb{Q}^{*} . (b) $\mathbb{Q}(\sqrt[5]{2}, e^{\frac{2\pi i}{5}})$ is a splitting field of some polynomial with rational coefficients.	
	(c) $[\mathbb{Q}(e^{\frac{2\pi i}{5}}):\mathbb{Q}] = 4,$	
	(d) None of the above.	

Section B

- 1. Let α is algebraic over a field \mathbb{F} . Then, prove that the $[\mathbb{F}(\alpha) : \mathbb{F}]$ is the degree of the irreducible polynomial of α over \mathbb{F} .
- 2. Compute the degree of extension $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$ over \mathbb{Q} with all details.
- 3. Prove that the set of all constructible real numbers form a subfield of \mathbb{R} .
- 4. Let K be a finite field. Then prove that the sum of all nonzero elements of K is 0.
- 5. Compute the intermediate subfields of the biquadratic extension $K = \mathbb{Q}(\iota, \sqrt{3})$ over \mathbb{Q} . 6
- 6. Consider the biquadratic extension $\mathbb{Q}(\iota, \sqrt{3})$ over \mathbb{Q} . Compute the irreducible polynomial of $\alpha = \iota + \sqrt{3}$ over \mathbb{Q} .
- 7. Consider the extension field $K = \mathbb{Q}(\iota, \sqrt[3]{2})$ over \mathbb{Q} . Compute the primitive element of K over \mathbb{Q} .
- 8. Let p be an odd prime, and let L be a unique quadratic extension of $\mathbb Q$ contained in the Cyclotomic field $\mathbb Q(e^{\frac{2\pi \iota}{p}})$. Then

$$L = \mathbb{Q}\left(\sqrt{(-1)^{\frac{p-1}{2}}p}\right).$$

6

6.

Section - C

Unit - I

- 1. (a) Let \mathbb{F} be a field such that $ch(\mathbb{F}) \neq 2$. Then, prove that any extension K of \mathbb{F} of degree 2 can be obtained by adjoining a square root: $K = \mathbb{F}(\delta)$, where $\delta^2 = D$ is an element of \mathbb{F}
 - (b) Let $\mathbb{F} \subset K \subset L$ be fields. If L is algebraic over K and K is algebraic over \mathbb{F} , then L is algebraic over \mathbb{F} .
- 2. Let $F \subset L \subset K$ be fields. Then [K:F] = [K:L][L:F]. Deduce that if K is a field extension of F of prime degree p and $\alpha \in K \setminus F$, then α has degree p over F and $K = F(\alpha)$. 6+6

Unit - II

- 3. (a) Let p be a prime. If the regular p-gon can be constructed by ruler and compass, 6 then $p=2^m+1$ for some integer m.
 - (b) Define an algebraic closure of a field. Construct the algebraic closure of a finite field \mathbb{F}_q , where $q = p^T$ and p a prime number.
- 4. (a) Prove that $\theta = 20^{\circ}$ is not constructible by ruler and compass.
 - (b) Prove that regular 7 gon is not constructible.

Unit - III

- 5. (a) Compute $G(\mathbb{Q}(\sqrt{2},\iota)/\mathbb{Q})$, the Galois group of biquadratic extension $\mathbb{Q}(\sqrt{2},\iota)$ over \mathbb{Q} .
 - (b) Let K/F be Galois extension, with Galois group G = G(K/F). Prove that the fixed field of G is F.
- 6. Discuss the Galöis theory of an irreducible cubic polynomial $x^3 + px + q \in \mathbb{F}[x]$ with all details.

Unit - IV

- 7. (a) Prove that every symmetric rational function is a rational function in elementary symmetric functions s_1, s_2, \ldots, s_n .
 - (b) Prove that the discriminant of an irreducible cubic polynomial $f(x) \in \mathbb{F}[x]$ is a square in \mathbb{F} if and only if the degree of its splitting field is 3.
- 8. Let G be a group of automorphisms of a field K of order n and $F = K^G$ be its fixed field. Then [K:F] = n.

Unit - V

- 9. Let K/F be a Galois extension, and L be an intermediate field. Let H = G(K/L) be the corresponding subgroup of G = G(K/F).
 - (a) Let $\sigma \in G$. Then the subgroup of G which corresponds to the conjugate subfield σL is the conjugate subgroup $\sigma H \sigma^{-1}$, i.e., $G(K/\sigma L) = \sigma H \sigma^{-1}$.
 - (b) L is a Galois extension of F if and only if H is a normal subgroup of G.
- 10. Let p be a prime number and let $\zeta = e^{\frac{2\pi \iota}{p}}$. Then, prove that
 - (a) The Galois group of $\mathbb{Q}(\zeta)$ over \mathbb{Q} is a cyclic group of order p-1.
 - (b) For any subfield \mathbb{F} of \mathbb{C} , the Galois group of $\mathbb{F}(\zeta)$ over \mathbb{F} is a cyclic group.