M A/M Sc Applied Mathematics, Semester - 3rd, 2016-17 End-Semester Examination

Course title: Linear Algebra Course number: PGAMT3C002T

Time allowed: 3 hours Maximum Marks: 100

Instructions for the candidates:

- The question paper consist of three sections, namely, Section A, Section B and Section C.
- The section A consist of 10 objective type questions, and all the questions are compulsory in this section.
- The section B consist of 10 short answer type questions with 2 questions from each unit, and the candidate has to attempt 5 questions selecting one question from each unit.
- The section C consist of 5 long answer type questions, and the candidate has to attempt any 3 questions.

Section - A

- 1. Let P be an $n \times n$ matrix over a field \mathbb{F} such that PA = AP; for all $n \times n$ matrices A over \mathbb{F} . Then, which of the following statement is true?
 - (a) P is a diagonal matrix.
 - (b) $P = I_n$ the $n \times n$ identity matrix.
 - (c) $P = \lambda I_n$, where $\lambda \in \mathbb{F}$ and I_n is a $n \times n$ identity matrix.
 - (d) None of the above.

 $1\frac{1}{2}$

- 2. Which of the following statement is false?
 - (a) Every matrix unit is not an invertible matrix.
 - (b) For $A, B \in M_n(\mathbb{R}), (A B)(A + B) = A^2 B^2$.
 - (c) Every elementary matrix in an invertible matrix.
 - (d) None of the above.

 $1\frac{1}{2}$

- 3. If V is a vector space over \mathbb{C} of dimension n, then V as a vector space over \mathbb{R} , has dimension
 - (a) n
 - (b) 2n
 - (c) n+1
 - (d) None of the above.

 $1\frac{1}{2}$

4.	Let V be a vector space of dimension n over a field \mathbb{F} . Then, which of the fo statement is false:	llowing
	(a) If a subset $S = \{v_1, v_2, \dots, v_n\}$ of vectors in V is linearly independent, then S V .	5 spans
	(b) If a subset $S = \{v_1, v_2, \dots, v_n\}$ of vectors in V spans V , then S is linearly independent.	
	(c) Every subset of V consisting of n vectors is linearly independent.	1
	(d) None of the above.	$1\frac{1}{2}$
5.	Let $A = \begin{bmatrix} 3 & -1 & 2 \\ 1 & 2 & 5 \end{bmatrix}$ be a 2×3 matrix over \mathbb{R} . Then, $rank(A)$ is equal to	
	(a) 2	
	(b) 3	
	(c) 1	
	(d) None of the above.	$1\frac{1}{2}$
6.	Which of the following statement is true?	
	(a) If $m > n$, then there exist an onto linear map from \mathbb{R}^n to \mathbb{R}^m .	
	(b) There exist an onto linear map from \mathbb{R}^4 to \mathbb{R}^4 .	
	(c) If $m < n$, then there exist an injective linear map from \mathbb{R}^n to \mathbb{R}^m .	
	(d) None of the above.	$1\frac{1}{2}$
7.	Let A be a $n \times n$ orthogonal matrix and $\{C_1, C_2, \dots, C_n\}$ be the set of columns of A which of the following is false?	Then,
	(a) $\langle C_i, C_j \rangle = \delta_{ij}$, where δ_{ij} is the Kronecker-delta function.	
	(b) $ AX = X $ for all $X \in \mathbb{R}^n$.	
	(c) $\det(A) = \pm 1$.	
	(d) None of the above.	$1\frac{1}{2}$
8.	. Let A be a real symmetric matrix. Then the eigen values of A are	
	(a) positive real numbers.	
	(b) purely complex numbers.	
	(c) real numbers.	
	(d) None of the above.	$1\frac{1}{2}$
9.	Let A be a $n \times n$ unitary matrix. Then	_
	(a) eigenvalues of A are real numbers.	
	(b) $det(A) = 1$.	
	(c) A is an invertible matrix.	

(d) None of the above.

- 10. Which of the following statement is false?
 - (a) The eigenvalues of a skew Hermitian matrix are purely complex numbers of modulus 1.
 - (b) The eigenvalues of a real symmetric positive definite matrix are positive real numbers.
 - (c) If A is unitary matrix, then eigenvalues of A are complex numbers of modulus 1.
 - (d) None of the above.

 $1\frac{1}{2}$

8

Section - B

Unit-I

- 1. Show that elementary matrices are invertible.
- 2. Compute the inverse of matrix $\begin{bmatrix} 2 & 3 \\ 1 & 3 \end{bmatrix}$ using row reduction.

Unit-II

- 3. Show that $W = \{A \in M_n(\mathbb{R}) : A \text{ is a symmetric matrix}\} \subset M_n(\mathbb{R})$ is subspace over the field \mathbb{R} of real numbers and compute its dimension.
- 4. Let V be a finite dimensional vector space over a field \mathbb{F} , S, T be finite subsets of V such that S is linearly independent and T spans V. Then $|T| \geq |S|$.

Unit-III

5. Define $T:\mathbb{R}^3\longrightarrow\mathbb{R}^2$ as follows: For $\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\in\mathbb{R}^3$, define

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) := \begin{bmatrix} x_1 + 2x_2\\2x_3 + x_1\end{bmatrix}.$$

Then show that T is a linear transformation, and compute the matrix of T with respect to ordered basis $B = \left\{ v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, v_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$ and $B' = \left\{ e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ of \mathbb{R}^3 and \mathbb{R}^2 , respectively.

6. Use Gram-Schmidt orthonormalisation to construct an orthonormal basis of \mathbb{R}^3 from the ordered basis $\left\{v_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, v_2 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, v_3 = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$.

Unit-IV

7. Define the characterstic polynomial of a linear operator. Use the characterstic polynomial to show that if A is a 2×2 real symmetric matrix, then its eigenvalues are real numbers.

- 8. Let A be a $n \times n$ real matrix. Then show that the following statements are equivalent:
 - (a) A is an orthogonal matrix.
 - (b) The columns C_1, C_2, \ldots, C_n of A are mutually orthogonal unit vectors in \mathbb{R}^n with respect to standard dot product on \mathbb{R}^n .

8

Unit-V

- 9. Determine the type of conic defined by the polynomial equation $2x_1^2 + x_2^2 + 2x_1 + 2x_2 + 1 = 0$.
- 10. Let $V = \frac{\mathbb{C}[t]}{\langle (t-\lambda)^n \rangle}$ be a cyclic $\mathbb{C}[t]$ -module. Then the matrix of linear map given by scalar multiplication by t on V as \mathbb{C} -vector space with respect to basis $\mathcal{B} = \{w_0, w_1, \ldots, w_{n-1}\}$, where $w_0 = 1 + \langle (1-t)^n \rangle$ and $w_i = (t-\lambda)^i \cdot w_0$; $i = 1, 2, \ldots, n-1$, is a Jordan block J_{λ} .8

Section - C

- 1. (a) Let A and B be $n \times n$ matrices. Then, show that $\det(AB) = \det(A) \det(B)$.
 - (b) Let A be a $n \times n$ matrix. Then show that $adj(A) \cdot A = \delta \cdot I = A \cdot adj(A)$, where $\delta = \det(A)$.
- 2. (a) Let $S = \{v_1, v_2, \dots, v_n\}$ be a linearly independent set of vectors in a vector space V over a field \mathbb{F} , and $v \in V$. Then $S' = S \cup \{v\} = \{v_1, v_2, \dots, v_n, v\}$ is a linearly independent subset of V if and only if v does not belong to the subspace spanned by $S = \{v_1, v_2, \dots, v_n\}$, i.e., $v \notin L(S)$.
 - (b) Consider

$$S = \left\{ v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\} \subset \mathbb{R}^3.$$

Extend S to a basis of \mathbb{R}^3 .

(

- 3. (a) Define a linear transformation and give an example of a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 .
 - (b) State and prove rank-nullity theorem.

11

- (a) Define eigenvalue and eigenvector of a linear operator and give an example.
 - (b) Compute the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ where $\theta \neq 0, \pi$.
- 5. State spectral theorem for a Hermitian operator, and use it to find a 2×2 unitary matrix P such that PAP^* is a real diagonal matrix, where $A = \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}$, a 2×2 hermitian matrix.