M A/M Sc Applied Mathematics, 4th-Semester, 2016-17 End-Semester Examination

Course title: Galois Theory Course number: PGAMT4F005T

Time allowed: 3 hours Maximum Marks: 100

Instructions for the candidates:

- The question paper consist of three sections, namely, Section A, Section B and Section C.
- The section A consist of 10 objective type questions, and all the questions are compulsory in this section.
- The section B consist of 10 short answer type questions with 2 questions from each unit, and the candidate has to attempt 5 questions selecting one question from each unit.
- The section C consist of 5 long answer type questions, and the candidate has to attempt any 3 questions.

Section A

- 1. Which of the following statement is false?
 - (a) $\mathbb{Q}(\sqrt{2}) \simeq \mathbb{Q}(\sqrt{3})$.
 - (b) $\mathbb{Q}(\sqrt{\pi}) \simeq \mathbb{Q}(x)$
 - (c) $\mathbb{Q}(\sqrt[5]{3}e^{\frac{2\pi \circ}{5}}) \simeq \mathbb{Q}(\sqrt[5]{3})$
 - (d) None of the above.

2. Which of the following statement is false?

- (a) $\left[\mathbb{Q}\left(e^{\frac{2\pi\iota}{5}}\right):\mathbb{Q}\right]=4$
- (b) $[\mathbb{Q}(\sqrt[5]{6}) : \mathbb{Q}] = 5$
- (c) $[\mathbb{Q}(\sqrt[7]{3}) : \mathbb{Q}] = 7$
- (d) None of the above.
- 3. Which of the following is a false statement?
- (a) $\sqrt[3]{2}$ is a constructible number.
 - (b) $\sqrt[5]{2}$ is algebraic over \mathbb{Q} .
 - (c) $\sqrt{2}$ is a constructible number.
 - (d) None of the above.

1.5

1.5

4.	Which of the following statements is false?	
	 (a) The polynomial x² + x + 1 ∈ Q[x] is an irreducible polynomial over Q. (b) The polynomial x⁵ + x⁴ + x³ + x² + x + 1 ∈ Q[x] is an irreducible polynomial in Q[x]. 	
	(c) All the roots of the polynomial $x^4 + x^3 + x^2 + x + 1 \in \mathbb{Q}[x]$ are distinct.	
	(d) The polynomial $x^3 - 6 \in \mathbb{Q}[x]$ is irreducible in $\mathbb{Q}[x]$.)
5.	Which of the following statement is true?	
	(a) Every algebraic extension is a finite extension.	
	(b) The algebraic closure of finite fields \mathbb{F}_4 and \mathbb{F}_8 , having 4 and 8 elements respectively, is same.	
	(c) The algebraic closure of a finite field is finite.	
	(d) Every finite field is algebraically closed.)
6.	Which of the following statement is false?	
	(a) $\mathbb{Q}(\sqrt{5})/\mathbb{Q}$ is a Galois extension.	
	(b) \mathbb{C}/\mathbb{R} is a Galois extension.	
	(c) \mathbb{R}/\mathbb{Q} is a Galois extension.	
	(d) \mathbb{R}/\mathbb{R} is a Galois extension.)
7.	Consider $f(x) = (x - u_1)(x - u_2)$, the quadratic polynomial, and $s_1 \& s_2$ are elementary symmetric polynomials in $u_1 \& u_2$. Then the discriminant D of $f(x)$ is	
	(a) $s_1^2 - 4s_2$.	
	(b) $s_1^2 - 2s_2$.	
	(c) $s_2^2 - 4s_1$.	
	(d) None of the above.	5
8.	Which of the following statement is false?	

- (a) $\cos \frac{2\pi}{5}$ is a constructtible number.
- (b) $\cos \frac{2\pi}{7}$ is a constructible number.
- (c) $\cos \frac{2\pi}{17}$ is a constructible number.
- (d) None of the above.

1.5

- 9. Let E be a splitting field of cubic polynomial $f(x) \in \mathbb{F}[x]$ such that $[E : \mathbb{F}] = 6$. Then the number of intermediate fields L between \mathbb{F} and K such that L is a Galöis extension over \mathbb{F} is
 - (a) 2
 - (b) 1

- (c) 4
- (d) 3

1.5

- 10. Which of the following is a false statement?
 - (a) $\mathbb{Q}(\sqrt[5]{2}, e^{\frac{2\pi \iota}{5}})$ is a Galois extenstion over \mathbb{Q} .
 - (b) $\mathbb{Q}(\sqrt[5]{2}, e^{\frac{2\pi t}{5}})$ is a splitting field of some polynomial with rational coefficients.
 - (c) $[\mathbb{Q}(e^{\frac{2\pi\iota}{5}}):\mathbb{Q}]=4$,
 - (d) None of the above.

1.5

Section B

Unit - I

- 1. Let α is algebraic over a field F. Then show that the $[F(\alpha):F]$ is the degree of the irreducible polynomial of α over F.
- 2. Compute the degree of extension $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$ over \mathbb{Q} with all details.

Unit - II

3. Show that a regular pentagon is constructible.

- 8
- 4. Let \mathbb{F}_2 be a field having two elements. Show that $x^3 + x + 1 \in \mathbb{F}_2[x]$ is an irreducible polynomial and $\frac{\mathbb{F}_2[x]}{\langle x^3 + x + 1 \rangle}$ is a field having eight elements.

Unit - III

- 5. Compute the intermediate subfields of the biquadratic extension $\mathbb{Q}(\iota, \sqrt{3})$ over $\mathbb{Q}.8$
- 6. Show that if E is the splitting field of an irreducible cubic polynomial $f(x) \in F[x]$, then either [E:F]=3 or [E:F]=6.

Unit - IV

- 7. Show that every symmetric rational function in $k(u_1, u_2, ..., u_n)$ is a rational function in elementary symmetric polynomials $s_1, s_2, ..., s_n$.
- 8. Let G be a finite group of automorphisms of a field E and $F = E^G$ be its fixed field. Then [E:F] = |G|.

Unit - V

- 9. Let p be a prime number and let $\zeta = e^{\frac{i2\pi}{p}}$. Then the Galois group $Gal(\mathbb{Q}(\zeta)/\mathbb{Q})$ of $\mathbb{Q}(\zeta)$ over \mathbb{Q} is a cyclic group of order p-1.
- 10. Let p be an odd prime, and let L be a unique quadratic extension of \mathbb{Q} contained in the Cyclotomic field $\mathbb{Q}(e^{\frac{i2\pi}{p}})$. Then

$$L = \mathbb{Q}\left(\sqrt{(-1)^{\frac{p-1}{2}}p}\right).$$

8

Section - C

1.	(a)	Let \mathbb{F} be a field such that $ch(\mathbb{F}) \neq 2$. Then, prove that any extension K of \mathbb{F} degree 2 can be obtained by adjoining a square root: $K = \mathbb{F}(\delta)$, where $\delta^2 = 1$ is an element of \mathbb{F} .	
	(b)	Let $F \subset L \subset E$ be fields. If E is algebraic over L and L is algebraic over then E is algebraic over \mathbb{F} .	F
2.	(a)	Let p be a prime. If the regular $p-gon$ can be constructed by ruler and compass, then $p=2^{2^m}+1$ for some integer m .	8
	(b)	Define an algebraic closure of a field. Construct the algebraic closure of a finitield \mathbb{F}_q , where $q=p^r$ and p a prime number.	7
3.	(a)	Describe Cardano's method to find a root of a cubic polynomial.	9
	(b)	Let E/F be Galois extension, with Galois group $G = Gal(E/F)$. Prove the fixed field of G is F .	at 6
4.	Stat	e and prove primitive element theorem.	LE
5.	Stat	e and prove Fundamental theorem of Galois theory.	15