M A/M Sc Applied Mathematics, Semester - II, 2017 End-Semester Examination

Time allowed: 3 hours Maximum Marks: 100

Instructions for the candidates:

- The question paper consist of three sections, namely, Section A, Section B and Section C.
- The section A consist of 10 objetive type questions, and all the questions are compulsory in this section.
- The section B consist of 10 short answer type questions with 2 questions from each unit, and the candidate has to attempt 5 questions selecting one question from each unit.
- The section C consist of 5 long answer type questions with one question from each unit and the candidate has to attempt any 3 questions.

Section A

1. The number of abelian groups of order 6 (upto isomorphism) is:

(a)							
(b)	2						
(c)	3						
(4)	1					1	. 5

2. Let G be a group such that |G| = 15. Then which of the following statements is false?

 $1 \cdot 5$

- (a) G is abelian.
- (b) G is cyclic.
- (c) $G \simeq \mathbb{Z}/15\mathbb{Z}$.
- (d) None of the above.
- 3. The number of groups of order 33 (upto isomorphism) is
 - (a) 4
 - (b) 2
 - (c) 1

(a) Every PID is a Euclidean domain.(b) Every Euclidean domain is a PID.

- (c) Every PID is a UFD.
- (d) None of the above.

 $1 \cdot 5$

- 10. Which of the following statement is true?
 - (a) Every UFD is a PID.
 - (b) $\mathbb{Z}[x]$ is a PID.
 - (c) $\mathbb{Z}[x, y]$ is a UFD, but not a PID.
 - (d) All of the above.

 $1 \cdot 5$

Section B

Unit - I

- 1. Define $\varphi: (\mathbb{R}, +) \longrightarrow (\mathbb{S}^1, \cdot)$ given by $\varphi(t) = e^{i2\pi t}; t \in \mathbb{R}$, where \mathbb{R} is group under addition of real numbers, \mathbb{Z} is a group under addition of integers and \mathbb{S}^1 is the set of complex numbers of modulus 1 which forms a group under multiplication of complex numbers. Show that φ is onto homomorphism with $Ker(\varphi) = \mathbb{Z}$. Deduce that $\mathbb{R}/\mathbb{Z} \simeq \mathbb{S}^1$.
- 2. Let G be a finite group such that $|G| = p^2$, where p is a prime. Prove that G is abelian. Is a group of order 169 is abelian? Justify your answer.

Unit - II

- 3. Prove that $Aut(S_3) \simeq S_3$, where S_3 is the permutation group on 3 symbols $\{1, 2, 3\}$.
- 4. Let $\tau = (i_1 \ i_2 \ \dots \ i_r) \in \mathfrak{S}_n$ be an r-cycle and $\sigma \in \mathfrak{S}_n$ be any permutation. Then $\sigma \tau \sigma^{-1} = (\sigma(i_1) \ \sigma(i_2) \ \dots \ \sigma(i_r))$ is also an r-cycle.

Unit - III

- 5. Prove that a group G is solvabable if and only if $G^{(n)} = \{e\}$ for some n, where $G^{(n)}$ is the nth commutator subgroup of G.
- 6. Let R be a commutative ring with identity 1_R . Prove that an ideal $M \subset R$ is a maximal ideal in R if and only if R/M is a field.

Unit - IV

- 7. Prove that every ideal in a Euclidean domain is a principal ideal.
- 8
- 8. Show that 2 is not a prime element in the ring $\mathbb{Z}[\sqrt{d}]$, where $d \in \{-2, -1, 2, 3\}$.

Unit - V

- 9. Let R be a UFD and $f(x), g(x) \in R[x]$ are primitive polynomials. Prove that the product f(x)g(x) is also a primitive polynomial.
- 10. Prove that the cyclotomic polynomial $f(x) = x^{p-1} + x^{p-2} + \ldots + x + 1$, where p is a prime number, is an irreducible polynomial over the field \mathbb{Q} of rational numbers. 8

Section - C

1. State and prove Cauchy's Theorem.

3 + 12

5

- 2. State Sylow theorems. Prove that if G is a group of order pq, where p > q are primes, such that q does not divide p-1, then G is cyclic.
- 3. Consider the map $\varphi: C[0,1] \longrightarrow \mathbb{R}$ given by $\varphi(f) = f\left(\frac{1}{2}\right)$; $f \in C[0,1]$, where C[0,1] is the ring of continuous real valued functions on the closed interval [0,1]. Show that φ is an onto ring homomorphism with $Ker(\varphi) = \{f \in C[0,1] : f\left(\frac{1}{2}\right) = 0\}$. Deduce that $Ker(\varphi)$ is a maximal ideal of C[0,1].
- 4. (a) Define a Euclidean domain. Show that the polynomial ring F[x] over a field is a Euclidean domain. 2+8
 - (b) Compute the units in the ring $\mathbb{Z}[i]$ of Gaussian integers.
- 5. State and prove Gauss Theorem. Deduce that the polynomial ring $\mathbb{Z}[x,y]$ over \mathbb{Z} in two variables x,y is a UFD.