## MA/MSc Applied Mathematics, IInd-Semester, 2016-2017

### **End-Semester Examination**

Course Title: Topology Course Code: PGAMT2C001T

Time allowed: 3hours Maximum Marks: 100

#### Instructions for the candidates:

- The question paper consists of three sections, namely Section A, Section B and Section C.
- The section A consists of 10 objective type questions and all the questions are compulsory in this section.
- The section B consists of 10 short answer type questions with 2 questions from each unit and the candidate has to attempt 5 questions selecting one question from each unit.
- The section C consists of 5 long answer type questions one question from each unit and the candidate has to attempt any three questions.

**Note:** (1) Topology on  $\mathbb{R}^n$ ,  $n \ge 1$  is usual topology unless a different one is specified.

(2) Meaning of a space is topological space unless mentioned.

#### Section A

- 1. Which of the following topological spaces is disconnected?
- (a) Real line with usual topology.
- (b) Set of non-zero real numbers with subspace topology of R.
- (c) Any trivial Space
- (d) None of these

1.5

- 2. Given  $f: X \to Y$  be a continuous function from topological space X onto topological space Y. Then
- (a) If *X* is first countable, then *Y* is first countable.
- (b) If X is separable, then Y is separable.
- (c) If *X* is second countable, then *Y* is second countable.
- (d) All of the above

1.5

- 3. Let *X* be a connected space. Then
- (a) X is not the union of two separated sets.
- (b) The only subsets of X which are both open and closed are  $\phi$  and X.
- (c) X is not the union of two disjoint, non-empty closed sets.
- (d) All of the above.

1.5

- 4. Which of the following subspace of  $\mathbb{R}$  is locally connected but not connected?
- (a) [1,5]

| (b) Set of rationals. (c) [0,1]U[4,5] (d) None of these                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.5 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <ul> <li>5. The one point compactification R<sub>∞</sub> of the real line R is:</li> <li>(a) A circle</li> <li>(b) S<sup>2</sup> = {x = (x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub>) ∈ R<sup>3</sup>:   x   = 1}</li> <li>(c) n dimensional sphere</li> <li>(d) None of these</li> </ul>                                                                                                                                                                                 | 1.5 |
| <ul> <li>6. Which of the following is not true for a topological space X?</li> <li>(a) If X is compact then it is countably compact.</li> <li>(b) If X is Lindelöf and compact then it is countably compact.</li> <li>(c) If X is Lindelöf and countably compact then it is compact.</li> <li>(d) If X is countably compact then it is compact.</li> </ul>                                                                                                                | 1.5 |
| <ul> <li>7. The quotient space of [0,1] × [0,1] obtained by identifying the pair of points (0, and (1,1 - x<sub>2</sub>), 0 ≤ x<sub>2</sub> ≤ 1 is homeomorphic to</li> <li>(a) Torus</li> <li>(b) Mobius Strip</li> <li>(c) Circle</li> <li>(d) Projective Plane</li> </ul>                                                                                                                                                                                              | 1.5 |
| <ul> <li>8. Which of the following is true?</li> <li>(a) Product of any family of compact spaces is compact.</li> <li>(b) Product of finite number of compact spaces is compact.</li> <li>(c) Product of finite number of Hausdorff spaces is Hausdorff.</li> <li>(d)All of these</li> <li>9. A topological space X is said to be T<sub>1</sub>/3 space if</li> <li>(a) Each sequence in X has at most one limit.</li> <li>(b) Its each compact set is closed.</li> </ul> | 1.5 |
| <ul><li>(c) Every finite subset of X is closed.</li><li>(d) All of above.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                       | 1.5 |
| <ul> <li>10. Which of the following is true for a topological space X?</li> <li>(a) X is Hausdorff ⇒ X is regular.</li> <li>(b) X is T<sub>1</sub> ⇒ X is normal.</li> <li>(c) X is regular ⇒ X is normal.</li> </ul>                                                                                                                                                                                                                                                     |     |
| (d) None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5 |

# Section B

|     | Unit-I                                                                                                                                                                                                 |    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1.  | Prove that every separable metric space is second countable.                                                                                                                                           |    |
|     | Prove that a subset A of a topological space X is open if and only if $A = int A$ .                                                                                                                    |    |
|     | Unit-II                                                                                                                                                                                                |    |
| 1.  | Let X be a connected space and $f: X \to Y$ a continuous function from X onto a space Y. Prove that Y is connected.                                                                                    |    |
| 2.  | State and prove The Intermediate Value Theorem.                                                                                                                                                        |    |
|     | Unit-III                                                                                                                                                                                               |    |
| 1.  | Let X be a compact space, Y a Hausdorff space, and $f: X \to Y$ a continuous one-to-one                                                                                                                |    |
|     | function from $X$ onto $Y$ . Prove that $f$ is a homeomorphism.                                                                                                                                        |    |
| 2.  | Prove that each closed subset of a compact space is compact.                                                                                                                                           |    |
|     | Unit-IV                                                                                                                                                                                                |    |
| 1.  | Prove that product of a finite number of connected spaces is connected.                                                                                                                                |    |
| 2.  | Let X and Y be spaces and $f: X \to Y$ a continuous function from X onto Y. If f is either                                                                                                             |    |
| 9   | open or closed prove that $Y$ has the quotient topology determined by $f$ .                                                                                                                            |    |
|     | . Unit-V                                                                                                                                                                                               |    |
|     | Prove that a $T_1$ -space $X$ is regular if and only if for each point $a$ in $X$ and each open set $U$ containing $a$ , there is an open set $W$ containing $a$ whose closure is contained in $U$ . 8 |    |
| 2.  | Prove that every metric space is normal.                                                                                                                                                               |    |
|     | Section C                                                                                                                                                                                              |    |
| . I | Prove that separability, first countability and second countability are topological properties.                                                                                                        | 1  |
|     | Prove that $\mathbb{R}$ is connected and connected subsets of $\mathbb{R}$ are precisely the intervals.                                                                                                | 1. |
|     | Prove that a metric space is compact if and only if it has the Bolzano-Weierstrass property.                                                                                                           |    |
|     | Prove that product of an arbitrary family of compact spaces is compact.                                                                                                                                | 1. |
|     | State and prove Tietze Extension Theorem.                                                                                                                                                              |    |
|     | was prove treeze Extension rheorem.                                                                                                                                                                    | 1: |